Выбрать главу

§ 4.11 Волновые свойства частиц

Его богатое воображение, его оптимистическая готовность овладеть проблемой, не затруднённые слишком критическим подходом, были бы здесь весьма уместны.

А. Зоммерфельд по поводу ранней кончины В. Ритца [50]

Вальтер Ритц, подобно Шерлоку Холмсу, был непревзойдённым мастером по простому рациональному объяснению, на первый взгляд, сверхъестественных явлений и загадочных фактов, оказавшихся не по зубам представителям официальных структур. Так, Ритц классически объяснил результат опыта Майкельсона, спектры атомов, излучение чёрного тела. И, в объяснении волновых свойств частиц, пожалуй, именно Ритц, которому было многое по плечу, благодаря его оптимизму и смелому воображению, предложил бы разгадку. Однажды он уже сделал это, объяснив на базе корпускулярной теории истечения света и баллистического принципа волновые свойства света, переносимого частицами-реонами. Несомненно, Ритц предложил бы разумное наглядное классическое объяснение и волновым свойствам всех других частиц.

Так, волновые свойства были обнаружены не только у электронов, но и у других частиц, — нейтронов, атомов и молекул. Но, совершенно так же, как в случае реонов и электронов, эти опыты можно объяснить классически, не прибегая к гипотезе корпускулярно-волнового дуализма, а продолжая считать частицы простыми телами, корпускулами.

Рис. 166. Схема работы селектора скоростей, пропускающего молекулы со скоростями V=d/t.

Рассмотрим, например, дифракцию молекулярных пучков на поверхности кристалла. Сначала прибор, называемый "селектором скоростей" и представляющий собой два вращающихся диска с прорезями [134], выделяет из пучка частицы, обладающие заданной скоростью и соответствующей длиной волны де Бройля (Рис. 166). Этот пучок падает на кристалл и отражается, подобно электронному (Рис. 161). При этом, кроме пучка, отражённого под углом падения φ, возникают два побочных пучка, — два вторичных максимума, как от дифракции (Рис. 167). Эти максимумы отстоят от главного тем дальше, чем ниже скорость молекул и больше длина волны. Кажется, этот опыт уверенно доказывает волновые свойства частиц. Но это только кажется, поскольку он тоже имеет простую классическую трактовку. Прежде всего, селектор пропускает помимо молекул со скоростью V=d/t, частицы, летящие со скоростями d/(t+nT), где n — целое число, T — период обращения дисков. То есть, в кристалл попадают и сравнительно медленные частицы, за время пролёта которых селектор делает один или n оборотов.

Рис. 167. Картина рассеяния пучка атомов кристаллом напоминает дифракционную, но объясняется классически.

Теперь рассмотрим частицу, падающую на поверхность кристалла. Атом отскакивает не от отдельных атомов кристалла, а от взаимодействия с их общим электрическим полем. Поле атомной плоскости имеет волнистые эквипотенциальные поверхности, горбы которых расположены напротив атомов, а впадины — между ними. При этом, чем дальше от границы кристалла, тем более плоскими и гладкими становятся плоскости равного потенциала. От этих эквипотенциальных поверхностей и отскакивают, отражаются атомы или молекулы газа. Чем выше энергия частиц газа, тем от более глубокой поверхности они отразятся, словно от жёсткой, то есть, — под углом равным углу падения. Если сечение поверхности изобразить синусоидой с предельной крутизной α, то видно, что атомы будут отражаться под любыми углами, заключёнными в пределах от φ–2α до φ+2α. Причём интенсивней всего идёт отражение именно под этими крайними углами: каждый пучок создаёт по два максимума (Рис. 168). У медленных частиц они отстоят мало, поскольку частицы отражаются внешними эквипотенциальными слоями, почти плоскими, — с малым α. Эти медленные молекулы с V=d/(t+nT), которых в газе больше всего, и создают высокий главный пик возле угла φ — максимумы слиты в один (Рис. 167). Зато быстрые молекулы c V=d/t доходят до более глубоких слоёв с большей волнистостью и крутизной α. Именно они создают возле главного два побочных максимума, ошибочно принятых за дифракционные.