Выбрать главу

С дальнейшим охлаждением вымерзает и вращательная степень свободы: двухатомные молекулы перестают вращаться, что тоже вполне объяснимо. Молекулы получают вращение от косых, боковых соударений, когда часть кинетической энергии в ходе удара переходит в энергию вращения. Но, с понижением температуры, молекулы всё чаще испытывают прямые, лобовые соударения, и уже не закручиваются. Ведь, при малой температуре частицы движутся медленно, отчего, в процессе сближения, электрические дипольные моменты молекул (созданные взаимной поляризацией) успевают сориентировать их перед ударом — вдоль линии сближения. Вдоль неё они и отскакивают, не получив вращения (Рис. 175). Именно так, двухатомный газ, при стремлении температуры к абсолютному нулю, и теряет вращательные степени свободы, ведя себя как одноатомный, — с теплоёмкостью C=3R/2. При низких температурах имеет место классическое упорядочение, но, если у большинства газов упорядочиваются положения молекул от слияния их в кристаллы, то у водорода, остающегося газом вплоть до температуры в 14 K, упорядочивается само тепловое движение молекул.

Рис. 175. Быстрое сближение молекул (а) ведёт к боковому удару и их закрутке, а при медленном они ориентируются (б) вдоль оси удара, не получив вращения (в).

Отсюда легко получить теоретические графики зависимости теплоёмкости газа от температуры, соответствующие экспериментальным данным (Рис. 173.а). Очевидно, что характерная температура, при которой идёт изменение теплоёмкости двухатомного газа — с 5R/2 на 3R/2, зависит от момента инерции молекулы. Чем массивней, инертней двухатомная молекула, тем медленней она поворачивается от дипольного электрического взаимодействия молекул. Поэтому, требуются меньшие скорости сближения и большее охлаждение для осуществления точной ориентации и прямого удара молекул, вместо косого. И, действительно, если у водорода снижение теплоёмкости становится заметно уже при 200 K, то у других газов, обладающих бóльшими молекулярными массами и моментами инерции, — при гораздо меньших температурах [19]. Также, температурный ход теплоёмкости различен для выделенных отдельно пара- и ортоводорода. Связано это, по-видимому, не только с разницей их молекул, но и с тем, что рост температуры ведёт к распаду молекул параводорода до ортоводорода. А дополнительная теплота (аналогичная теплоте плавления § 4.20), которую необходимо сообщать для нагрева параводороду, воспринимается как его увеличенная теплоёмкость C, превосходящая даже типичное для средних температур значение C=5R/2 [19, с. 185]. Как видим, все квантовые эффекты имеют классическую молекулярно-кинетическую трактовку.

Интересно, что уже М.В. Ломоносов, построивший первый вариант молекулярно-кинетической теории теплоты, газов, жидкостей, растворов и твёрдых тел, чётко различал все три вида возможного теплового движения частиц тела. Огромную роль Ломоносов отводил именно вращательному движению молекул, которое замедляется с уменьшением температуры и сопровождается соответствующим уменьшением теплотворных свойств вещества. Таким образом, Ломоносов, даже без помощи математического аппарата, открыл, за век до Гельмгольца, Джоуля, Кельвина, Максвелла и других, — молекулярно-кинетическую теорию тепла и существование абсолютного нуля температуры ("последней степени холода, состоящей в полном прекращении движения частиц"). Кроме того, Ломоносов приблизился к пониманию роли вращательного движения частиц в образовании теплоёмкости тел, с его остановкой, при стремлении температуры к абсолютному нулю. Тем самым, Ломоносов проявил себя как стойкий сторонник атомизма Демокрита, в отличие о В. Нернста, который, открыв явление уменьшения теплоёмкости газа, при стремлении его температуры к абсолютному нулю, поспешил объяснять этот феномен с помощью гипотезы квантования вращательного движения молекул [156]. И это не удивительно, ведь Нернст, будучи учеником Оствальда, этого ярого сторонника энергетизма, воспринял его взгляды, близкие к кванторелятивистским (§ 5.14).