Выбрать главу

Столь странное поведение проводников, с точки зрения квантовой теории, совершенно загадочно. Но мы легко решим эту проблему, если заметим, что все эти материалы — висмут, сурьму, галлий, германий и теллур — объединяет другое аномальное свойство. Если все прочие металлы и полупроводники при плавлении расширяются, то эти пятеро сжимаются, уменьшая свой объём на несколько процентов. Это убедительно доказывает, что кристаллическая решётка и её дефекты сами по себе не влияют на сопротивление: основную роль здесь играет плотность размещения атомов вещества. И рост сопротивления металлов при плавлении связан лишь с их расширением, — отдалением атомов. Зато, металлы, уменьшающие объём при расплавке, уменьшают и удельное сопротивление. По той же причине взаимосвязаны скорость звука в металле и его проводимость: и то и другое растёт вместе с твёрдостью вещества, насыщенностью его межатомных связей, то есть с температурой Дебая, а точнее TS (§ 4.16). Так, ртуть и свинец, атомы которых слабо связаны, имеют максимальные значения сопротивления и TS, но минимальную скорость звука среди чистых металлов.

Классически это легко объяснить. Известно, что проводимость пропорциональна числу носителей заряда, — свободных электронов. Вот почему при нагревании, освещении (внутренний фотоэффект) сопротивление диэлектриков и полупроводников падает: связанные в их атомах электроны обретают скорости, достаточные для отрыва от атомов, и начинают участвовать в переносе заряда. К тому же ведёт и рост плотности металла: его атомы сближаются, их электрические поля всё больше перекрываются, и электронам требуется всё меньше энергии для отрыва от атомов и участия в переносе заряда (Рис. 179). При сближении атомов происходит обобществление их электронов, формирующих новые атомные связи и заполняющих вакансии, которые прежде могли удерживать свободные электроны (Рис. 170). В итоге всё больше становится избыточных, свободных электронов, которые отрываются от атомов и начинают участвовать в переносе заряда. К тому же, от "закрытия вакансий", свободные электроны всё меньше взаимодействуют с атомами, что наращивает ширину "пор" металла (областей потенциала, доступных для движения электронов), сквозь которые сочится электронный газ. Потому-то рост плотности металла и снижает сопротивление.

Рис. 179. Чем ближе атомы в кристаллической решётке, тем шире область перекрытия их электронных оболочек (заштрихована), тем легче электроны уходят от атомов и текут потоком по расширенным каналам, порам.

И, точно, давно замечено, что металлы, наращивая под давлением плотность, — уменьшают сопротивление. Так, сопротивление хрома и других металлов под давлением p (измеренным в атмосферах) снижается примерно на 10–6p от своей начальной величины. Более того, при сжатии под огромным давлением становятся проводниками даже диэлектрики, к примеру, — водород, сера. А некоторые материалы, скажем, кремний, германий, — переходят под большим давлением в сверхпроводящее состояние. Не исключено, поэтому, что температурный рост сопротивления вызван отчасти температурным расширением тел. А у металлов с отрицательным термическим коэффициентом расширения возможен даже минусовой термический коэффициент сопротивления. Поэтому, интересно было б узнать, как меняется сопротивление веществ, сжимающихся при нагреве: магнитных сплавов, германия возле -243 °C, плутония выше 400 °C, а также хрома в районе 37 °C — температуры, возле которой хром вдруг перестаёт менять объём. Впрочем, сопротивление должно меняться и в зависимости от состояния электронного газа. Ведь скорость течения газа через фильтр зависит как от размеров и формы пор фильтра, так и от свойств газа.

Прежде считали, что классическая теория проводимости Друде не может объяснить, почему введение даже малой примеси в чистый металл — заметно меняет его сопротивление. Так, введение в медь всего 1 % марганца увеличивает её сопротивление в три раза. Ясно, что столь сильное влияние связано с нарушением примесными атомами правильной кристаллической решётки меди. Поэтому, в квантовой теории проводимости сочли, что именно строгая периодичность решётки обеспечивает проводимость. Но, на деле, дефекты решётки просто меняют плотность металла и связывают электроны. Все знают, что уложенные правильными рядами предметы занимают меньший объём, чем беспорядочно сваленные. Вот и дефекты, — примесные атомы, нарушая порядок, распирают металл и увеличивают его сопротивление. Так что, и здесь важна не сама кристаллическая решётка, а лишь её средние межатомные расстояния.