Выбрать главу

Итак, поведение электронов в веществе вполне соответствует законам классической механики и термодинамики. А квантовая механика не только "безумна", но и часто даёт ложные предсказания, хоть теоретики и привыкли твердить, что квантовый подход — лучше классического. Кванторелятивисты пытаются убедить всех, что современная полупроводниковая электроника создана по квантовой теории и разработанной в её рамках зонной теории твёрдого тела. Но это — такая же наглая ложь, как байка о ключевой роли теории относительности в создании ядерной энергетики (§ 3.13), или как утверждение о роли квантовой теории в постройке лазеров (§ 4.9). На деле все эти изобретения XX в. строились не благодаря, а — вопреки квантовой физике и теории относительности, при серьёзных помехах со стороны их апологетов. Так, полупроводниковое радио на кристадине ещё в 1922 г. создал в нижегородской радиолаборатории О.В. Лосев. Примерно тогда же он построил первый транзистор (основу современной электроники), изучив физический механизм его работы, а также открыл явление электролюминесценции в полупроводниках (построил и исследовал первые светодиоды, без которых немыслима современная техника).

А главное, вполне адекватные объяснения работы всех этих приборов Лосев давал на основе классической физики и своих опытов (см. сборник "Опередивший время". Н.Новгород: ННГУ, 2006). Но именно эта независимость, оригинальность и самобытность Лосева, игнорирующего сложный квантовый подход, привела к тому, что внедрение его изобретений в практику задержалось на десятки лет. И виноваты в этом были как раз сторонники квантовой теории во главе с А. Иоффе. Если причастность Иоффе к трагической судьбе Ритца ещё под вопросом (§ 1.1), то про Лосева однозначно можно сказать, что задержка внедрения его изобретений в практику и гибель в блокадном Ленинграде целиком лежат на совести Иоффе, стоявшего во главе советской электроники и насаждавшего в стране бред кванторелятивистских теорий, а, потому, оказавшего негативное воздействие на развитие отечественной науки и полупроводниковой электроники, которая к середине XX века из передовой превратилась в отсталую.

В целом, заключая Часть 4, можно сказать, что различные свойства веществ, даже самые экзотические, любые "квантовые" эффекты, включая связанные с излучением вещества и волновыми свойствами частиц, — вполне понятны в рамках классической механики и физики. Причина её прежних мнимых несоответствий состояла не в декларируемой апологетами квантмеха "ошибочности" классической науки, а — в отсутствии адекватной теории, модели явлений, — от незнания устройства атома и механизмов различных процессов, а, нередко, из-за намеренного игнорирования, сокрытия и забвения таких удачных классических моделей. Так же, и все остальные явления, которые ещё будут когда-нибудь открыты, удастся легко объяснить классически. Зачастую, квантовое объяснение заметно уступает классическому, позволяющему понять и предсказать гораздо больше эффектов. Всё это означает, что классический подход далеко не исчерпал себя в термодинамике, теории излучения, физике твёрдого тела и теории строения вещества. Если его глубоко развить должным образом, это позволит предсказать новые свойства тел, создать новые вещества с требуемыми характеристиками. Квантовая теория такой возможности лишена, более того, — её "предсказания" часто — ошибочны и вредны, поскольку могут вести к авариям. А потому до сих пор приходилось подыскивать вещества слепым гаданием, "методом научного тыка", пользуясь разве что эмпирическими правилами. Однако и эти достижения "задним числом" выдавали за "триумфы" квантовой теории. Именно это привело к длительному застою в наиболее перспективных направлениях развития науки. Поэтому, думается, лишь классический подход, развитый Ритцем, Столетовым, Друде, Кюри и другими, позволит выйти из этого кризиса, застоя, замороженного состояния науки.