Физики, однако, боготворят Максвелла и его уравнения. Восхищение уравнениями Максвелла доходит до того, что их обожествляют, словно в них заключена вся мудрость природы, и всё из них следует. А между тем эти уравнения построены чисто формально, как произвольные обобщения эмпирически открытых законов. Так, первое уравнение Максвелла rotH=∂D/∂t+j и четвёртое уравнение divB=0 — это всего лишь обобщения известных законов Био-Савара-Лапласа и Ампера, позволяющих найти величину магнитного поля проводника с током. Второе уравнение Максвелла rotE=-∂B/∂t — это просто обобщённый закон электромагнитной индукции Фарадея [88]. Наконец, третье уравнение divD=ρ — это, опять же, не более чем обобщение закона Кулона, задающего электрическое поле D заряда, и теоремы Остроградского-Гаусса. Иногда утверждают, что Максвелл, кроме обобщения этих известных законов, сделал важное и даже гениальное добавление — открыл ток смещения (∂D/∂t — плотность этого тока), который, как следует из первого уравнения, создаёт магнитное поле H, подобно току проводимости (j — его плотность).
А на деле всё это следовало из тех же законов Био-Савара и Ампера. Рассмотрим первое уравнение в интегральной форме ∫LHdl=d/dt∫SDds+I. Оно читается так: "циркуляция вектора H по замкнутому контуру L равна изменению по времени потока вектора D через поверхность S, ограниченную контуром L, плюс ток проводимости I через эту поверхность". Возьмём контур L в виде кольца, а на оси кольца, перпендикулярной его плоскости S, разместим элемент тока, не пересекающий эту плоскость, то есть, в уравнении I=0. Но согласно закону Био-Савара на кольце L всё равно индуцируется магнитное поле H, направленное вдоль линии контура L, то есть имеющее отличную от нуля циркуляцию. Потому Максвелл был вынужден добавить в правую часть уравнения ток смещения d/dt∫SDds, дабы учесть предсказанное законом Био-Савара и Ампера влияние элементов тока, не пересекающих площадку S. Ток — это движение зарядов, которое ведёт к изменению созданного зарядами потока поля D через поверхность S: если элемент тока направлен к кольцу, то заряды приближаются и созданный ими поток D нарастает, отчего и создаётся магнитное поле на контуре L. То есть максвеллов ток смещения — это не более чем удобный эквивалент токов проводимости, не пересекающих S, то есть напрямую неучтённых в его уравнении.
С этой точки зрения первое уравнение Максвелла оказывается просто отражением давно известного закона сохранения заряда: нарастание потока созданного зарядами поля D через замкнутую поверхность S соответствует притоку через эту поверхность зарядов (то есть электрическому току) [88]. Всё это ещё раз доказывает, что максвеллов ток смещения — это фикция [96], а уравнения Максвелла — это лишь удобное обобщение давно найденных законов электродинамики. Физики считают, что именно этим-то обобщением уравнения Максвелла и замечательны, ибо выражают гораздо больше открытых эмпирически законов Кулона, Ампера и Фарадея. Но, как показал Ритц, именно в силу своей чрезмерной общности уравнения Максвелла часто допускают физически невозможные решения. Истинная же электродинамическая теория должна давать единственное, причём физически верное решение. Поэтому Ритц критиковал электродинамику Максвелла и особенно его уравнения в частных производных, имеющие множество физически недопустимых решений [8]. Ритц считал, что такого рода уравнения должны быть изгнаны из фундаментальных законов Природы.