Выбрать главу

Однако сторонники эфира и максвелловой электродинамики могут возразить, что в рамках представлений о свете, как о потоке частиц, нельзя объяснить явления дифракции, т. е. огибания светом препятствий. Световая волна, идущая в эфире или передаваемая электромагнитным полем, могла бы легко обойти экран, создав за ним светлое пятно. Но как это возможно для волны, движущейся прямолинейно с потоком частиц? Впрочем, уже Лоренц показал, что "огибание" светом экрана происходит совсем не так, как обтекание препятствий волнами на воде. Оказывается, свет, падающий на металлический экран, вовсе не задерживается им: электромагнитные волны (несомые реонами) свободно проходят сквозь все преграды. Откуда же тогда за экраном тень? Электродинамика даёт на это простой ответ: электромагнитная волна, проходя сквозь металл, заставляет его электроны колебаться, а вибрирующие электроны служат источниками вторичных волн, излучаемых в противофазе с падающей. Эти, созданные экраном вторичные волны, интерферируя с прошедшей волной, как раз и гасят её (Рис. 34).

Рис. 34. Природа тени: а) для световых волн; б) для волн в среде.

Так и возникает тень за экраном. Иногда так борются и с шумом в аэропортах — не задерживают его, но ставят устройства, генерирующие шум в противофазе. Выходит, выражение "экран отбрасывает тень" имеет не фигуральный, а вполне физический смысл, поскольку тень создана излучением экрана, исходящим от него в форме выброшенных металлом светоносных частиц-реонов. Совершенно так же в электростатике металлический экран экранирует электрическое поле — за металлической пластиной поле равно нулю. Но это происходит не потому, что металл задерживает электрическое воздействие (реоны по теории Ритца легко проходят сквозь любые преграды), а потому, что поле, воздействуя на электроны металла, перераспределяет в металле заряд таким образом, что заряд поляризованного металла создаёт вторичное поле, которое, складываясь с исходным, полностью гасит его. Примерно то же происходит и в электродинамике, в электромагнитной волне.

При достаточно большой длине волны, интерференция испускаемых круглым экраном вторичных волн — с падающей создаёт светлое пятно в центре тени и более сложные интерференционные картины (Рис. 35). Для этого световому потоку ни к чему огибать экран. Именно Лоренц внёс в этот вопрос ясность. В своей электронной теории он показал, что используемый обычно принцип Гюйгенса, по которому каждую точку на фронте волны в пустом пространстве можно считать вторичным источником, — неверен. Источником волн могут служить только заряды: в пустом пространстве волны не возникают. Электромагнитная волна, идущая сквозь среду, вызывает колебания электронов в атомах этой среды. Колеблющиеся электроны испускают вторичные волны с частотой своих колебаний. Эти вторичные волны, складываясь, интерферируя друг с другом и с исходной волной, порождают различные явления: изменение скорости волны в среде, дисперсию, дифракцию.

Рис. 35. Дифракция света создаётся интерференцией вторичных волн, идущих от вибрирующих электронов экрана.

Итак, дифракционную картину за экраном создают не волны от источника, обогнувшие экран, а сам экран, являющийся источником вторичных волн. Если экран представляет собой металлическую пластину, то это свободные электроны металла. Если же экран — это непрозрачный диэлектрик, то это связанные электроны атомов и молекул. Они, опять же, не просто гасят падающее излучение, но генерируют при колебаниях излучение в противофазе, которое и гасит свет за экраном.

В том, что свет, отражённый средой или прошедший через неё, создаётся не самим источником, а именно средой, убеждают хотя бы явления отражения и рефракции (преломления света средой). В самом деле, при отражении света металлическим полированным зеркалом мы видим источник не в реальном его положении, а в совсем ином: мы видим не сам свет источника, а лишь его отражение. Реоны падающей волны, попавшие в металл, вызывают колебания электронов металла с частотой падающей волны реонов. Эти электроны при колебаниях испускают вторичные волны и, тем самым, создают новый луч света и мнимое изображение источника. В то же время, исходные реоны свободно проходят сквозь металл и продолжают свой путь в исходном направлении.