Выбрать главу

Интересно, что сравнимыми, т. е. возможно равными, являются только кортежи с одной и той же схемой отношений. Поэтому, например, два нигде не определенных кортежа с различными схемами отношений не будут равными, как могло ожидаться. Они будут различными так же, как их схемы отношений.

5. Отношения. Типы отношений

И наконец дадим определение отношению, как некой вершине пирамиды, состоящей из всех предыдущих понятий. Итак, отношение (обозначается r, от англ. relation – «отношение») со схемой отношений S определяется как обязательно конечное множество кортежей, имеющих ту же схему отношения S. Таким образом:

r ≡ r(S) = {t(S) | t ∈r};

По аналогии со схемами отношений количество кортежей в отношении называют мощностью отношений и обозначают как мощность множества: |r|.

Отношения, как и кортежи, различаются по типам. Итак, отношения называются:

1) частичными, если для любого входящего в отношение кортежа выполняется следующее условие: [def(t) ⊆ S].

Это (как и с кортежами) общий случай;

2) полными, в том случае если t ∈ r(S) выполняется: [def(t) = S];

3) неполными, если ∃t ∈ r(S) def(t) ⊂ S;

4) нигде не определенными, если ∀t ∈ r(S) [def(t) = ∅].

Обратим отдельное внимание на нигде не определенные отношения. В отличие от кортежей работа с такими отношениями включает в себя небольшую тонкость. Дело в том, что нигде не определенные отношения могут быть двух видов: они могут быть либо пустыми, либо могут содержать единственный нигде не определенный кортеж (такие отношения обозначаются {∅(S)}).

Сравнимыми (по аналогии с кортежами), т. е., возможно равными, являются лишь отношения с одной и той же схемой отношения. Поэтому отношения с различными схемами отношений являются различными.

В табличной форме представления, отношение – это тело таблицы, которому соответствует строка – заголовок столбцов, т. е. буквально – вся таблица, вместе с первой строкой, содержащей заголовки.

Лекция № 4. Реляционная алгебра. Унарные операции

Реляционная алгебра, как нетрудно догадаться, – это особая разновидность алгебры, в которой все операции производятся над реляционными моделями данных, т. е. над отношениями.

В табличных терминах отношение включает в себя строки, столбцы и строку – заголовок столбцов. Поэтому естественными унарными операциями являются операции выбора определенных строк или столбцов, а также смены заголовков столбцов – переименования атрибутов.

1. Унарная операция выборки

Первой унарной операцией, которую мы рассмотрим, является операция выборки – операция выбора строк из таблицы, представляющей отношение, по какому-либо принципу, т. е. выбор строк-кортежей, удовлетворяющих определенному условию или условиям.

Оператор выборки обозначается σ<P>, условие выборкиP<S>, т. е., оператор σ берется всегда с определенным условием на кортежи P, а само условие P записывается зависящим от схемы отношения S. С учетом всего этого сама операция выборки над схемой отношения S применительно к отношению r будет выглядеть следующим образом:

σ<P>r(S) σ<P>r = {t(S) |tr & P<S>t} = {t(S) |tr & IfNull(P<S>t, False};

Результатом этой операции будет новое отношение с той же схемой отношения S, состоящее из тех кортежей t(S) исходного отношения-операнда, которые удовлетворяют условию выборки P<S>t. Понятно, что для того, чтобы применить какое-то условие к кортежу, необходимо подставить значения атрибутов кортежа вместо имен атрибутов.

Чтобы лучше понять принцип работы этой операции, приведем пример. Пусть дана следующая схема отношения:

S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка).

Условие выборки возьмем такое:

P<S> = (Предмет = ‘Информатика’ and Оценка > 3).

Нам необходимо из исходного отношения-операнда выделить те кортежи, в которых содержится информация о студентах, сдавших предмет «Информатика» не ниже, чем на три балла.

Пусть также дан следующий кортеж из этого отношения:

t(S) ∈ r(S): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Применяем наше условие выборки к кортежу t, получаем:

P<S>t = (‘Базы данных’ = ‘Информатика’ and 5 > 3);

На данном конкретном кортеже условие выборки не выполняется.

А вообще результатом этой конкретной выборки

σ<Предмет = 'Информатика' and Оценка > 3 > Сессия

будет таблица «Сессия», в которой оставлены строки, удовлетворяющие условию выборки.

2. Унарная операция проекции

Еще одна стандартная унарная операция, которую мы изучим, – это операция проекции. Операция проекции – это операция выбора столбцов из таблицы, представляющей отношение, по какому-либо признаку. А именно машина выбирает те атрибуты (т. е. буквально те столбцы) исходного отношения-операнда, которые были указаны в проекции.

Оператор проекции обозначается [S'] или π<S'>. Здесь S' – подсхема исходной схемы отношения S, т. е. ее некоторые столбцы. Что это означает? Это означает, что у S’ атрибутов меньше, чем у S, потому что в S' остались только те из них, для которых выполнилось условие проекции. А в таблице, представляющей отношение r(S' ), строк столько же, сколько их у таблицы r(S), а столбцов – меньше, так как остались только соответствующие оставшимся атрибутам. Таким образом, оператор проекции π< S'> применительно к отношению r(S) дает в результате новое отношение с другой схемой отношения r(S' ), состоящее из проекций t(S) [S' ] кортежей исходного отношения. Как определяются эти проекции кортежей? Проекция любого кортежа t(S) исходного отношения r(S) на подсхему S' определяется следующей формулой:

t(S) [S’] = {t(a)|adef(t) ∩ S’}, S' ⊆S.

Важно заметить, что дубликаты кортежей из результата исключаются, т. е. в таблице, представляющей новое, результирующее отношение повторяющихся строк не будет.

С учетом всего вышесказанного, операция проекции в терминах систем управления базами данных будет выглядеть следующим образом:

π<S'>r(S) ≡ π<S’>rr(S) [S’] ≡ r [S' ] = {t(S) [S’] | tr };

Рассмотрим пример, иллюстрирующий принцип работы операции выборки.