4) для операции декартового произведения (в общем случае, свойство не применимо);
5) для операции естественного соединения: r × r = r.
Интересно, что свойство идемпотентности верно не для всех операций из приведенных, а для операции декартового произведения оно и вовсе не применимо. Действительно, если объединить, пересечь или естественно соединить какое-либо отношение само с собой, оно не изменится. А вот если отнять от отношения точно равное ему отношение, в результате получится пустое отношение.
3. Свойство коммутативности:
1) для операции объединения:
r1 ∪ r2 = r2 ∪ r1;
2) для операции пересечения:
r ∩ r = r ∩ r;
3) для операции разности:
r1 \ r2 ≠ r2 \ r1;
4) для операции декартового произведения:
r1 × r2 = r2 × r1;
5) для операции естественного соединения:
r1 × r2 = r2 × r1.
Свойство коммутативности выполняется для всех операций, кроме операции разности. Это легко понять, ведь от перестановки отношений местами их состав (кортежи) не меняется. А при применении операции разности важно, какое из отношений-операндов стоит на первом месте, потому что от этого зависит, кортежи какого отношения примутся за эталонные, т. е. с какими кортежами будут сравниваться другие кортежи на предмет исключения.
4. Свойство ассоциативности:
1) для операции объединения:
(r1 ∪ r2) ∪ r3 = r1 ∪(r2 ∪ r3);
2) для операции пересечения:
(r1 ∩ r2) ∩ r3 = r1 ∩ (r2 ∩ r3);
3) для операции разности:
(r1 \ r2) \ r3 ≠ r1 \ (r2 \ r3);
4) для операции декартового произведения:
(r1 × r2) × r3 = r1 × (r2 × r3);
5) для операции естественного соединения:
(r1 × r2) × r3 = r1 × (r2 × r3).
И снова мы видим, что свойство выполняется для всех операций, кроме операции разности. Объясняется это таким же образом, как и в случае применения свойства коммутативности. По большому счету, операциям объединения, пересечения, разности и естественного соединения все равно в каком порядке стоят отношения-операнды. Но при «отнимании» отношений друг от друга порядок играет главенствующую роль.
На основании вышеприведенных свойств и рассуждений можно сделать следующий вывод: три последних свойства, а именно свойство идемпотентности, коммутативности и ассоциативности, верны для всех рассмотренных нами операций, кроме операции разности двух отношений, для которой не выполнилось вообще ни одно из трех означенных свойств, и только в одном случае свойство оказалось неприменимым.
4. Варианты операций соединения
Используя как основу рассмотренные ранее унарные операции выборки, проекции, переименования и бинарные операции объединения, пересечения, разности, декартова произведения и естественного соединения (все они в общем случае называются операциями соединения), мы можем ввести новые операции, выведенные с помощью перечисленных понятий и определений. Подобная деятельность называется составлением вариантов операций соединения.
Первым таким вариантом операций соединения является операция внутреннего соединения по заданному условию соединения.
Операция внутреннего соединения по какому-то определенному условию определяется как производная операция от операций декартового произведения и выборки.
Запишем формульное определение этой операции:
r1(S1) × Pr2(S2) = σ <P> (r1 × r2), S1 ∩ S2 = ∅;
Здесь P = P <S1 ∪ S2> – условие, накладываемое на объединение двух схем исходных отношений-операндов. Именно по этому условию и происходит отбор кортежей из отношений r1 и r2 в результирующее отношение.
Следует отметить, что операция внутреннего соединения может применяться к отношениям с разными схемами отношений. Эти схемы могут быть любыми, но они ни в коем случае не должны пересекаться.
Кортежи исходных отношений-операндов, попавшие в результат операции внутреннего соединения, называются соединимыми кортежами.
Для наглядного иллюстрирования работы операции внутреннего соединения, приведем следующий пример.
Пусть нам даны два отношения r1(S1) и r2(S2) с различными схемами отношения:
r1(S1):
r2(S2):
Следующая таблица даст результат применения операции внутреннего соединения по условию P = (b1 = b2).
r1(S1) × Pr2(S2):
Итак, мы видим, что действительно «слипание» двух таблиц, представляющих отношения, произошло именно по тем кортежам, в которых выполняется условие операции внутреннего соединения P = (b1 = b2).
Теперь на основании уже введенной операции внутреннего соединения мы можем ввести операцию левого внешнего соединения и правого внешнего соединения. Поясним.
Результатом операции левое внешнее соединение является результат внутреннего соединения, пополненный несоединимыми кортежами левого исходного отношения-операнда. Аналогично результат операции правого внешнего соединения определяется как результат операции внутреннего соединения, пополненный несоединимыми кортежами стоящего справа исходного отношения-операнда.
Вопрос, чем же пополняются результирующие отношения операций левого и правого внешнего соединения, вполне ожидаем. Кортежи одного отношения-операнда дополняются на схеме другого отношения-операнда Null-значениями.
Стоит заметить, что введенные таким образом операции левого и правого внешнего соединения являются производными операциями от операции внутреннего соединения.
Чтобы записать общие формулы для операций левого и правого внешнего соединений, проведем некоторые дополнительные построения.
Пусть нам даны два отношения r1(S1) и r2(S2) с различными схемами отношений S1 и S2, не пересекающимися друг с другом.
Так как мы уже оговаривали, что операции левого и правого внутреннего соединения являются производными, то мы можем получить следующие вспомогательные формулы для определения операции левого внешнего соединения:
1) r3 (S2 ∪ S1) ≔ r1(S1) × Pr2(S2);