Запрещая непрерывное излучение, Н. Бор фактически запретил и непрерывное движение электрона. И именно поэтому его идеи вызвали целый шквал дискуссий. Еще бы! Ведь гениальный датчанин поставил под удар «святая святых» классической физики — представление о непрерывном движении. Вместо ясных траекторий в пространстве появились какие-то скачки между различными орбитами, кое-кто уже и не прочь был пофантазировать: а вдруг электрон вообще выскакивает из обычного пространства и времени…
Теория Н. Бора бросала смелый вызов всей физической теории в целом. На стороне квантовой модели атома были только экспериментальные данные, которые она объясняла, да, пожалуй, единственная теоретическая модель световых квантов. Сам же А. Эйнштейн, заслуживший к тому времени славу главного «крушителя основ», оказался в числе наиболее активных оппонентов Н. Бора. Не столь уже редкий случай, когда концепция и ее творец становятся по разные стороны баррикад…
В конечном счете дискуссии показали, что теория Н. Бора стоит вне конкуренции в описании атомных экспериментов, но практически ни один из крупнейших теоретиков не был удовлетворен обоснованием квантовой картины.
Первый фундамент под квантовую модель атома как раз и был подведен в работах тридцатилетнего Л. де Бройля, выполненных в 1923 году и включенных в его докторскую диссертацию. История вряд ли сумеет назвать еще одного столь же дерзкого претендента на ученую степень. Достаточно сказать, что А. Эйнштейн — едва ли не единственный физик, сразу почувствовавший преобразующую силу дебройлевских идей, — рекомендовал прочесть диссертацию М. Борну, охарактеризовав ее как «солидно написанный труд сумасшедшего»!
Гипотеза Л. де Бройля интересна и поучительна и в ином отношении. Она представляет собой удивительно ясный пример плодотворнейшего использования аналогий. Молодой исследователь исходил из того, что строго определенные значения частот получаются в боровской модели слишком искусственным путем. К обычной механике движения тел по орбитам добавляется специальное правило «допустимых орбит», между которыми электроны могут совершать перескоки. А нельзя ли получить тот же самый результат более естественным способом?
Л. де Бройль начинает свое построение с очень интересного мысленного опыта. Давайте предположим, говорит он, что фотон, эйнштейновский квант электромагнитного поля, имеет чрезвычайно малую, но не нулевую массу. Обычно в теории считают, что это не так и масса фотона строго равна нулю. Но ведь ее можно сделать (мысленно!) настолько малой, что никаким известным экспериментам это не будет противоречить.
После этого Л. де Бройль напоминает о двойственной природе электромагнитного поля. Если масса фотона настолько мала, что ее нельзя заметить в эксперименте, то, очевидно, нельзя и заметить какие-либо изменения и в известных волновых свойствах электромагнитного поля. Таким образом, делает вывод молодой физик, наличие у частицы массы не исключает в принципе и проявления ее волновых свойств.
Теперь Л. де Бройль делает чрезвычайно смелый и красивый шаг по устранению несправедливости (вероятно, все шаги в этом направлении смелые и красивые, но, увы, далеко не все они достигают цели). Почему, спрашивает он, в случае электромагнитного поля мы пользуемся двумя представлениями: волнами и частицами (фотонами!), а в случае электрона — только одним: частица, и все тут? Если дело только в массе электрона, то волновые явления наблюдать будет трудней, чем в случае электромагнитного поля, но все-таки их можно увидеть!
Итак, Л. де Бройль предсказал, что электрону необходимо сопоставить волну, причем длина волны должна быть обратно пропорциональна его импульсу. Это прежде всего привело к очень простому и естественному объяснению загадочного устройства боровского атома.
Как вы помните, Н. Бор «разрешил» электронам двигаться, ничего не излучая, лишь по некоторым, строго определенным орбитам. Но перед физиками встал мучительный вопрос: чем, собственно говоря, выделены именно такие «допустимые орбиты» среди любых других? Неужели, недоумевали теоретики, за боровскими правилами определения этих орбит не скрывается какое-то глубокое свойство электронов, ясный физический образ, который помог бы расшифровать столь необычные законы внутриатомного движения?
Что уж тут поделаешь! Ни в физике, ни в повседневной жизни люди не удовлетворяются сухими предписаниями типа: «то-то и то-то должно двигаться так-то и так-то». Всегда возникают вопросы: а почему именно так, а что будет, ежели по-другому?..
Возьмем совсем простой, казалось бы, пример — правила дорожного движения. На автострадах, на улицах наших городов развешаны многочисленные знаки, которые запрещают, указывают, предостерегают, предлагают… Их придумано очень много — ровно столько, сколько необходимо, чтобы сориентироваться на современных, перегруженных машинами дорогах. И трудно выучить все эти знаки просто так, не вдумываясь в их смысл, не испытав их значения на практике, сидя за рулем. Установлено, что автолюбители, сознательно изучившие роль тех или иных знаков, гораздо реже попадают в аварии, чем те, которые восприняли науку о дорожном движении как скучную приправу к заветным водительским правам. И вот, скажем, перед водителями первого и второго типа возникает знак «Обгон воспрещен!».
Первый, несомненно, послушается, даже если ему придется плестись в хвосте у неторопливого перегруженного грузовика с прицепом. Он хорошо знает, что обгонять нельзя по той простой причине, что на данном участке дороги не хватит места для трех автомобилей, идущих рядом, а вероятностью появления встречной машины как раз в момент обгона не стоит пренебрегать. Второй водитель в такой же ситуации начнет лихорадочно соображать: «Эта дизельная вонючка вымотает мне все нервы… Только что я успешно совершил несколько обгонов, ширина дороги вроде бы не изменилась, инспектора нигде не видать… Была не была!» Проскочит он, может быть, разок-другой по принципу «была не была», а на третий — краткое сообщение ГАИ в вечерней газете, скромный венок от месткома… А ведь вдумайся он хоть раз в «физический смысл» запрета на обгон, ездить ему бы и ездить…
Имея в виду этот несколько грустный пример, перейдем к правилам внутриатомного движения электрона. Почему в них разрешено движение только по строго определенным боровским орбитам? Л. де Бройль ответил на этот вопрос следующим образом: вместе с электроном на орбите присутствует волна, и вот именно она может существовать только в некоторых строго определенных случаях.
Вот, оказывается, в чем суть дела! Будь электрон просто частицей, он мог бы носиться вокруг ядра на любом расстоянии. Но его неизбежно сопровождает волна, и ему приходится думать и о ее существовании. А волна, в свою очередь, «выбирает» только те орбиты, на которых она может уложиться целое число раз. Иными словами, отношение длины окружности, по которой бегает электрон, к длине сопровождающей его волны непременно должно быть целым числом. Очевидно, что орбиты, удовлетворяющие этому условию, окажутся выделенными, а на всех остальных орбитах просто не хватает места для того, чтобы «электронная волна» бежала по замкнутой окружности, уложившись в ней целое число раз.
Исходя из таких соображений, Л. де Бройль сумел объяснить закономерности расположения электронных орбит в атоме и правила, по которым атомы излучают фотоны строго определенных частот. Это был огромный, но отнюдь не главный успех молодого исследователя. Из его гипотезы следовало, что волновые свойства электронов должны проявиться и вне атомов. В частности, электроны должны были рассеиваться на достаточно малых препятствиях, подобно электромагнитным волнам, в частности, свету, образуя дифракционную картину.
Дифракция — очень интересное явление. Его обнаружение явилось в свое время решающим аргументом в пользу волновой теории света. Еще древние греки догадывались, что свет распространяется прямолинейно, от какого источника он бы ни исходил: от гигантского Солнца или от маленького костра. И. Ньютон положил этот факт в основу своей теории, считая, что свет состоит из мельчайших частичек — особых световых корпускул. С такой точки зрения легко и наглядно объясняется, например, образование тени. Скажем, в яркую, солнечную погоду многие пользуются зонтиками. Это простейшее приспособление для того, чтобы избежать чрезмерного загара; оно действует по принципу поглощения светового потока. Для световых корпускул зонтик играет роль экрана. Такова же его роль и во время дождя, когда экранируется поток дождевых капель. В первом случае зонтик отбрасывает тень на тротуар, а во втором — образуется небольшой сухой круг, в который не могут попасть капли.