Выбрать главу

Заранее ничего нельзя было сказать. Возможно, мир в целом ничуть не согнут, или искривлен лишь в отдельных малых участках — будто воронки крутятся тут и там на зеркальной водной глади. Так это или не так, могло сказать конкретное исследование.

И Эйнштейн решает задачу. Отказывается от нефизичного требования Шарлье — чтобы средняя плотность вещества в пределе равнялась нулю. Пусть она составляет некую конечную величину — это естественнее. Отвергает и схемы Шарлье, они теперь не нужны. А взамен выдвигает тоже, правда, не очень справедливое на первый взгляд предположение: материя распределена во Вселенной равномерно, без сгущений и пустот, словно сплошной, всюду одинаковый, непрерывный кисель. Зачем это?

Не думайте, что Эйнштейн позабыл об атомах, звездах, галактиках и прочих вездесущих комках материи. Нет, он просто представил себе, что, начиная с каких- то громадных объемов, «зернистость» Вселенной становится несущественной в формировании пространства — времени. И тогда плотность материи не меняется при еще большем увеличении этих объемов. Ведь и обыкновенный клюквенный кисель, как известно, не непрерывен, а состоит из молекул. Но мы воспринимаем его как сплошную жижу. Подобно этому, звезды и галактики — нечто вроде молекул всезаполняющего вселенского «киселя» — «космологического субстрата».

Так задача была облегчена. В достаточно крупных масштабах гипотетическая кривизна мира становилась величиной постоянной, повсюду одинаковой.

Но понять ее характер, вычислить ее было необычайно сложно.

Решение никак не получалось. Не удалось найти неизменный «радиус кривизны» всего мира. Вселенная выходила какой-то зыбкой, нестабильной.

Тут-то Эйнштейн и допустил оплошность, за которую впоследствии сам себя изрядно поругивал. По традиции предков он прибег к услугам... Атласа. Навязал природе нечто неведомое, придуманное специально для того, чтобы уравнения можно было решить так, как хотелось их автору.

Математический Атлас

На должность Атласа, держащего мир в целости и сохранности, была принята всего лишь маленькая закорючка, добавленная Эйнштейном в выражение фундаментального метрического тензора для всего мира. Она именовалась «космологической постоянной» или «ламбда-членом». Этот математический символ (греческая буквам — ламбда, отсюда название), внесенный в метрические коэффициенты, так скорректировал теоретически вычисляемую кривизну пространства — времени, что стала возможна ее стабильность, независимость от времени. Этого и хотел Эйнштейн. Так он достиг целостности, постоянства своей модели мироздания.

На языке Ньютона наличие ламбда-члена означало весьма много: произвольно признавалось, что в большой Вселенной существуют, помимо тяготения, еще какие-то другие силы. Они-де и гарантируют сохранность мира.

И впрямь вышел невидимый вездесущий богатырь, держащий на плечах само небо! Он не дает звездам падать друг на друга, бережет их, сдерживает. Чем не Атлас!

Этой-то ценой и заплатил Эйнштейн за свою модель Вселенной. Но она вышла конечной, а не бесконечной, как у Ньютона. Ее пространство — замкнутым, как в шарике Пуанкаре со страницы 223. Шагая прямо вперед, мы в этом мире обязательно вернулись бы в точку старта, хоть она и поднялась бы «вверх по времени», так как время для всей Вселенной было единым и неизменно равномерным. Брошенный камень, двигаясь по инерции, не покрыл бы путь больший, чем «вокруг Вселенной». Так же повел бы себя и световой луч: яркую звезду можно было бы увидеть сразу впереди и сзади, в диаметрально противоположном направлении — в виде слабенькой звездочки. Появилась надежда даже найти на небе такие «задние» изображения ярких звезд (их хотели отождествить по сходству спектров). Ничего, однако, найти не удалось.

В модели Эйнштейна, как и в шаре Пуанкаре, отсутствовали достижимые изнутри границы, «обрывы» пространства.

Всюду, следуя давнишнему совету Лукреция Кара и других античных мудрецов, можно было «бросить копье» — оно полетело бы вперед, что доказало бы отсутствие каких бы то ни было границ. (Пользуюсь случаем восхититься простотой и остроумием этого древнего рецепта проверки пространства «на безграничность».)

В беспредельном, но конечном мире Эйнштейна любая точка могла считаться центром пространства. Делались попытки вычислить «радиус кривизны» этого мира, подсчитать его объем, полную массу материи в эйнштейновской Вселенной, даже полное количество ее звезд и прочих материальных тел[19].

вернуться

19

Согласившись с идеей конечного мироздания, Эддингтон занялся подсчетом всех элементарных частиц Вселенной и опубликовал маловразумительное число: 15 747 724 136 275 002 577 605 653 961 555 468 144 714 914 527 116 709 366 231 425 076 185 631 031 296 штук протонов и столько же электронов! Любопытно, что, когда, кроме протонов и электронов, в природе нашлись еще нейтроны (открытые в 1932 году), Эддингтон вынужден был подправить свои вычисления и объявил новое число частиц Вселенной, оказавшееся на четверть меньше (!) первого.