Выбрать главу

Стоит напомнить, что свободное падение отнюдь не обязано быть отвесным. Пуля, вылетевшая из дула пистолета параллельно земной поверхности, приближается к ней так же быстро, как и пуговица, упавшая со стола. Земля как пуля. Она не отвесно падает на Солнце.

Каково же ускорение падающей Земли?

Длину земной орбиты подсчитать проще простого. Эта орбита — круг радиусом 150 миллионов километров. Помножьте радиус на «два пи» (6,28) — выйдет миллиард километров. Время — 365 суток, год нашей жизни. Отсюда нетрудно подсчитать, что за секунду Земля успевает пролететь 30 километров по своей орбите и одновременно упасть к Солнцу на три миллиметра. По формуле Галилея S =act2/2 сразу же получаем значение ускорения Земли к Солнцу: ас = 0,6 см/сек2. Маловато, конечно. Но зато мы можем не опасаться катастрофического столкновения со своим жарким светилом.

Масса Солнца теперь выясняется автоматически: 2·1027тонн. Обратите внимание, на этот раз нам не понадобилась масса Земли. Достаточно было знать ускорение ее падения на Солнце. Любое тело, находящееся на земной орбите, будет падать к Солнцу с тем же ускорением — 0,6 см/сек2. Так в астрономическом масштабе продолжает действовать постоянство ускорения свободного падения для тел каких угодно масс. Явление, которое мы подметили на сосульках, падающих с карниза!

Ангелы-бездельники

От Солнца переходим к планетам.

Было время, когда неглупые люди всерьез полагали, что планеты все время подталкиваются ангелами, потому-де они и движутся. На каждую по ангелу.

Как следует из ньютоновских законов, ангелы эти — бездельники. Планеты великолепно обходятся без них: по инерции летят прямо, а влекомые солнечным тяготением, падают на светило. В результате сложения этих двух движений планеты сворачивают с прямого пути и движутся по эллипсам — так называют в геометрии фигуры, похожие на овал.

Сумма расстояний точек эллипса от двух точек, лежащих внутри фигуры и называемых фокусами, постоянна (это геометрическое определение).

В одном из фокусов всегда находится Солнце. Это знал еще Кеплер. Если же фокусы совпадают, получается круг. Многие планеты (в их числе наша Земля) движутся по почти точным кругам.

Ньютон разработал тонкий математический метод для вычисления планетных путей и решил с его помощью массу трудных задач.

Удалось найти зависимость периодов обращения двух разных планет (длительность «годов») от близости планет к Солнцу. Кубы наибольших расстояний планет, на которых они оказываются в своем движении вокруг Солнца, пропорциональны квадратам их «лет». И эта особенность, гениально угаданная Кеплером, нашла подтверждение в строго обоснованной теории Ньютона, который, однако, внес уточнение — зависимость от масс планет.

В разных местах эллипса движение неодинаковое: с приближением к Солнцу оно ускоряется, с удалением от Солнца — замедляется. Как меняется скорость, подметил тот же Кеплер (радиус, проведенный от планеты к Солнцу, в равные промежутки времени «выметает» одинаковые площади). А Ньютон дал доказательство.

В конце концов удалось составить подробнейшее «небесное расписание» движения планет. И — ни одного ангела! Или, как заметил один физик, должность ангела занимает само Солнце.

Всеобщее послушание

Расписание исполнялось с отменной точностью. Планеты следовали по орбитам с предсказанной скоростью, их уверенно находили в предсказанных местах неба. В назначенные часы, минуты и секунды происходили восходы, заходы, противостояния, затмения Солнца и Луны. Солнечная система голосовала за механику Ньютона, за всемирное тяготение.

Единственное исключение — одна малая особенность в движении Меркурия, не уложившаяся в предсказания ньютоновской небесной механики. Об этом пойдет речь далеко впереди.

А как обстояло дело за пределами Солнечной системы? Послушны ли Ньютону звезды?

Да, послушны. Этот ответ был получен наукой уже после смерти великого физика, когда развилась звездная астрономия.

Особенно красноречивы многолетние наблюдения так называемых двойных звезд, тех, что находятся по соседству и медленно кружатся одна вокруг другой. Есть убедительный документ, свидетельствующий о том, что этот звездный вальс точно следует ньютоновскому закону — фотографии взаимного расположения звездной пары Сириус А — Сириус В, сделанные на протяжении одного почти полного оборота этой пары — с 1862 до 1904 года. Чертеж орбиты Сириуса В — это типичный эллипс. И звезда путешествует по нему именно так, как назначено ньютоновской небесной механикой: чем дальше от Сириуса А, тем медленнее движется Сириус В. Возле фокуса он за шесть лет успевает пробежать такое же расстояние, какое вдали от фокуса преодолевает за шестнадцать. Это как раз и требует теория тяготения!