Признак этот называется интервалом. Его существование строго следует из геометрических особенностей мира Минковского, из того факта, что неодинаковы масштабы длин и длительностей для осей времени и расстояний, направленных на диаграмме в разные стороны.
Так вот, не мудрствуя дальше, я прошу вас принять на веру следующее.
Можно доказать, что на каждой из наших диаграмм (построенных при помощи световых линий, симметричных относительно них осей времени и расстояний и гиперболических калибровочных кривых) в любых системах отсчета остается одинаковым математическое выражение:
l2-c2t2.
Здесь l — длина предмета или расстояние между событиями, a t — длительность существования предмета или промежуток времени между событиями. Корень квадратный из этой величины и есть интервал:
Вот оно, неизменное и абсолютное в безбрежном море эйнштейновской относительности!
Что же такое интервал? Каков его физический смысл?
Это — пространственно-временной промежуток между событиями, выражающий, говоря словами Минковского, «некий род единства» пространства и времени.
Галина лента не имеет абсолютной длины, не имеет абсолютной длительности («времени жизни» в размотанном состоянии). Но она имеет интервал — «некое единство» длины и длительности.
Причем каждый наблюдатель, измеривший длину и время бытия развернутой ленты своими линейкой и часами, может быть уверен: вычисленная величина квадрата интервала ленты и у него, и у всех его коллег из других иначе движущихся систем отсчета получится точно такой же.
В этой неизменности (физики говорят — инвариантности) интервала — драгоценное свойство природы, рецепт для вычисления количественных релятивистских эффектов. Прежде нам были доступны лишь смутные, чисто качественные рассуждения. Я произносил неопределенные слова «длиннее», «короче», «быстрее», «медленнее», и только. Теперь же открыта дверь к математической точности, к числу.
Благодаря инвариантности интервала я вправе сделать о ленте следующее математическое утверждение, объединяющее точки зрения и Гали и Вали:
l2-c2t2 = l’2 - c2t’2
А из этого равенства после не очень сложных выкладок вытекают знаменитые формулы, называемые преобразованиями Лоренца [10]. Привожу их, по традиции этой книжки, без вывода. Для двух систем отсчета, равномерно движущихся друг относительно друга по прямым параллельным путям, релятивистские длительности явлений и продольные релятивистские длины даются выражениями:
Здесь t’ — релятивистская длительность, t — собственная длительность, l’ — релятивистская длина, l — собственная длина, с — скорость света, v — относительная скорость систем отсчета.
Формулы просты и красноречивы. Сразу видно, при каких условиях они начинают удивлять: когда относительная скорость вплотную приближается к скорости света. В противном случае, для малых скоростей, с практически беспредельной точностью действуют старинные правила Галилея:
t’=t, l’=l
Я обязан напомнить: описанный мир — не более чем примитивная модель диаграммы настоящих движений. Ведь наши поезда шли только от Москвы и только в сторону Ленинграда. А пространство фигурировало в виде одной только линии — железной дороги, начинающейся в Москве.
Усложняя мир, присоединим к Октябрьской железной дороге Киевскую (считаем, что получится прямая магистраль), но начало всех систем отсчета (отбытие поездов), как и прежде, предполагаем в Москве в московскую полночь. Вот какая будет диаграмма:
Поезда мчатся здесь из Москвы в Киев (влево) и в Ленинград (вправо). Телеграммы — тоже в обе стороны. Световых линий стало две, и они разместились под прямым углом: в Москве как бы вспыхнула молния, и ее свет летит сразу к Ленинграду и Киеву.
Следующее усложнение. К будущему присоединяем прошлое. Ленинградские поезда в полночь проезжают Москву и едут дальше, в Киев. Киевские, минуя в полночь же Москву, следуют в Ленинград. Телеграммы из Киева в Ленинград и из Ленинграда в Киев точно в 0 часов проскакивают через Москву:
Световые линии скрестились. Сверху между ними будущее, снизу—прошлое. А справа и слева — те области мира, куда поезда, подчиняющиеся нашему невообразимому расписанию (все минуют Москву в полночь и от этой мировой точки считают свои времена и расстояния), попасть не могут. Ибо нет в природе поездов, несущихся быстрее света.
10
По имени известного физика, который сумел вывести их за год до Эйнштейна, исходя из совсем других, неверных представлений: Лоренц думал, что движущиеся тела сплющиваются эфирным ветром.