Полезно повторить: Клио равномерно двигался относительно Земли со скоростью, которая была лишь на миллиметр в секунду меньше скорости света. Казалось, одно крошечное усилие — и он обгонит световой луч. Но ничего подобного. Вспомнив первый постулат Эйнштейна, Клио мог вообще забыть о своем движении, признать себя неподвижным.
Тогда он понял бы, что не только обгон света ему не удастся, но что даже до прежней скорости ему придется разгоняться заново. С чьей-то точки зрения вы можете, сильно ускорившись, вплотную подойти к скорости света, но, тем не менее, «для себя» останетесь от нее бесконечно далеко.
Итак, к леденцу, летящему в космосе, вдалеке от планет и звезд, я прикладываю силу. Леденец ускоряется. А я, оставаясь «неподвижным», наблюдаю. Сначала, пока скорость мала (вплоть до тысяч и даже десятков тысяч километров в секунду), ускорение тем больше, чем больше приложенная сила и чем меньше масса леденца. Точно соблюдается второй закон Ньютона. Однако дальнейший разгон решительно не подчиняется старому закону. Леденец становится слишком упрямым, неподатливым. Сила прежняя, а ускорение меньше. Выше скорость — труднее дальнейший разгон. У самой скорости света ускорение под действием прежней силы становится таким неуловимо крохотным, что леденец практически перестает разгоняться. Что ж, я неведомым способом увеличиваю силу. В десятки, в тысячи, в миллиарды раз. Трачу титаническую энергию. Но опять эффект мизерный. Скорость почти не растет. Приблизившись вплотную к скорости света, она словно замораживается.
Дело происходит точно так же, как при неудачной попытке бегства в прошлое. Ничего неожиданного нет. Но зато теперь я могу прямо указать на виновницу «сверхньютоновского» упрямства разгоняющегося тела. Это масса. По мере ускорения тела растет его инерция. У самой скорости света ускорить тело практически невозможно, какую бы гигантскую силу ни прикладывать. Значит, инерция, то есть инертная масса, леденца увеличивается к бесконечности.
Все это — с точки зрения любой инерциальной, то есть не испытывающей ускорений, системы отсчета.
Вот формула относительности массы. Лаконично и четко она говорит о том, что с чрезмерным многословием пояснялось выше.
Релятивистская масса m (то есть «движущаяся» масса для «неподвижного» наблюдателя) здесь сравнивается с массой покоя то (то есть с массой, которую измерил неподвижный относительно нее наблюдатель, например я, взвешивающий свой леденец). Можно без особого труда подсчитать, для кого мой леденец весит обещанные десять килограммов. Подставив в формулу соответствующие цифры, получим ответ: для наблюдателя, который движется относительно меня со скоростью 299 999 997 километров в секунду (если считать скорость света равной точно 300 000 километров в секунду) .
Неужели бывают такие расторопные «наблюдатели»? Позволив себе очередную некорректную фантазию, вообразим лилипута, сидящего верхом на каком-нибудь протоне из космических лучей, проносящихся мимо моей ладони. Лилипут — сластена, ему ужасно хочется схватить мой леденец и отправить в рот. Но сделать это ему в две тысячи раз труднее, чем если бы леденец летел рядом с ним. Потому что для него масса леденца увеличилась в две тысячи раз!
Лилипутов-лакомок, увы, не бывает. Зато протоны, несущиеся в космических лучах с подобными скоростями, встречаются нередко. У неподвижного протона масса 1,7·10-24 грамма. А у движущегося в космических лучах она возрастает для нас, землян, в те же две тысячи раз. Когда физик, лакомый до научных открытий, захочет поймать частицу космических лучей в какой-нибудь прибор, он помнит о релятивистском увеличении массы. Иначе ничего не выйдет, частица не поймается.
Тот же эффект обязательно учитывают, строя ускорители заряженных частиц. Современные ускорители — это машины, в которых полновластно распоряжается физика Эйнштейна.
Так законы теории относительности подтверждаются опытами. Сегодня они стали совершенно неотъемлемой частью экспериментальной физики быстрых движений и высоких энергий.
Приспело время исполнить обещание о дополнительной порции холодного душа на отчаянных фантазеров (в том числе и на грешную голову автора этой книжки), тех, что с легким сердцем разгоняют ракеты до релятивистских скоростей, заставляют космонавтов за месяцы достигать далеких галактик и без седины в волосах возвращаться домой. К нашему общему огорчению, подобные прожекты, видимо, никогда не осуществятся. И именно потому, что вместе с сокращением релятивистского пути, с замедлением релятивистского времени должна стремительно расти релятивистская масса ракеты. Для ускорений и торможений даже очень скромного по размерам субсветового галактического корабля потребуются неправдоподобно гигантские запасы топлива. Подсчитано: чтобы облететь нашу звездную систему за десятилетия собственного времени, понадобится энергия, равная, самое малое, полному потоку солнечных лучей за... сто миллионов лет! Комментарии излишни.