Вот такие чудеса допускают геометры в неевклидовом пространстве!
Еще диковина: некоторые неевклидовы пространства могут быть конечными, хоть и безграничными. Расстояния там не превышают некоего определенного значения и, соответственно, не могут существовать сколь угодно большие объемы.
Подобно тому, как яйцо или мяч обладают безграничной поверхностью, но ограниченной площадью, эллиптическое пространство не имеет границ и тем не менее имеет конечный объем. Искривляясь оно как бы замыкается на себя!
Странно? Очень.
Но все же доступно наглядному моделированию.
Французский математик Анри Пуанкаре один из предшественников Эйнштейна, ухитрился придумать любопытную модель замкнутого сферического пространства. Вот что он советует вообразить.
В шаровом сосуде находится некая среда, в которой плавают предметы и существа, наделенные весьма фантастическими свойствами. При охлаждении и среда и предметы абсолютно одинаково сжимаются, причем при нуле градусов обращаются в точки. Кроме того, световые лучи в этой среде преломляются тем сильнее, чем ниже температура. Шар снаружи заморожен до нуля градусов. А изнутри, из центра, разогрет. И от центра к периферии температура плавно снижается. Еще условие: существо в шаре не должно ощущать перемен температуры. Ему всегда «не жарко, не холодно». Вот и все.
По вашей командировке я обретаю указанные свойства, переселяюсь в шар Пуанкаре (пусть висящий где- то в космосе, в невесомости) и, допустим, обитаю в нем в полном одиночестве. Тем не менее я замечаю вокруг множество человеческих фигур. Всюду я вижу себя и только себя — и впереди, и сзади, и со всех сторон. Световые лучи идут замкнутыми путями. Приближаясь к краям шара, они, плавно преломляясь, заворачивают внутрь, так что эти края невозможно увидеть, даже находясь совсем рядом с ними. Завернув, лучи возвращаются туда, откуда вышли. Вот и получается, что передо мной — моя спина, надо мной — подошвы моих ног, подо мной — моя макушка. Стреляя вперед из светового пистолета, я, если захочу, попаду в собственный затылок.
Разумеется, луч представляется мне прямым. Считая его эталоном прямизны, я не замечаю кривизны своего пространства. Ее нельзя обнаружить и движением: шагая вдоль луча, я открываю лишь существование предельно большого расстояния, так как вскоре возвращаюсь к месту старта. Стенки шара мне совершенно недоступны. Когда я подхожу к ним, то сжимаюсь вместе с окружающей средой, и одновременно сжимаются все расстояния вокруг меня, все длины, все высоты. В любой точке шара я не замечаю изменения своих размеров. Поэтому всюду я воспринимаю окружающее пространство так, будто нахожусь в его центре. И не вижу нигде никаких границ своего маленького мирка. Он конечен по объему, но для меня безграничен. Очень красивая модель!
Как это ни парадоксально, шар Пуанкаре, быть может, кое в чем схож с нашей необозримой Вселенной. Но об этом потом.
Полагаю, мы с вами уже созрели для геометрического истолкования анекдота о кривых дровах. Очень просто: если паровоз въезжает из плоского евклидова пространства в любое неевклидово, то прямые дрова автоматически превращаются в кривые.
Наоборот, если паровоз шел в неевклидовом пространстве и дрова в нем, по мнению машиниста и кочегара, были прямыми, то при въезде в евклидово пространство они искривятся.
Кривизна и прямизна предстают перед нами свойствами не абсолютными, а относительными! Каждое из них зависит от точки зрения, от договоренности, продиктованной, правда, не свободным произволом, а геометрическими свойствами пространства. Вообразив, что пространства разной кривизны вложены друг в друга и из одного можно наблюдать другое, относительность кривизны удастся представить вполне наглядно.
Допустим, например, такой случай. Изготовляя шар Пуанкаре, я вмонтировал в него резиновое кольцо. В евклидовом пространстве это кольцо мне представляется безусловно кривым. Но в шаре Пуанкаре оно может стать прямейшим, если вдоль него пойдет луч света. Вместе с тем железнодорожный рельс, для меня прямой как стрела, в сферическом пространстве станет дугой — ведь «прямой» для обитателя шара Пуанкаре световой луч от рельса отклонится. Удивляйтесь, если не устали!
Такова в самых примитивных чертах неевклидова геометрия. Заканчивая беседу о ней, я должен сообщить вам нечто важное и несколько обескураживающее.
Как вы наверняка догадываетесь, описанные в этой главе геометрические странности имеют непосредственное отношение к общей теории относительности, к тяготению, к инерции, в конечном счете — ко все еще не разгаданной нами до .конца загадке падения тел, действию тяжести через пустоту.