Выбрать главу

Астрономия, как известно, одна из древнейших наук. Если считать, что ее родоначальником был основатель первой обсерватории античного мира и создатель первой математической модели Солнечной системы Евдокс Книдский, то ей уже 24 столетия. И почти все это время астрономы вели наблюдения лишь в оптическом сегменте электромагнитных волн, то есть в видимом свете. В терминах энергии фотонов ширина этого диапазона меньше полутора электронвольт — от 1,7 эВ в красной части спектра до 3,1 эВ на фиолетовой границе.

В наши дни возможности астрономических наблюдений стали неизмеримо обширней. Сейчас исследователям космического пространства доступны сигналы, которые переносят фотоны с энергиями от 10–6 эВ (радиоволны) до 300 млрд эВ (верхний предел чувствительности обзорного гамма-телескопа на борту космической обсерватории имени Ферми). Энергии космических нейтрино регистрируются вплоть до 1015 эВ, а протонов — даже до 1020 эВ. Так что ширина диапазона энергий переносчиков сигналов составляет 26 порядков!

И вот что примечательно. Астрономия освоила все гигантское разнообразие космических мессенджеров за очень короткое время. Наблюдения небосвода в инфракрасных лучах ведут с середины XIX в. (сначала на Земле, а с 1983 г. — в космосе, и не только околоземном, но и околосолнечном). Затем настала очередь радиоастрономии. Первый настоящий радиотелескоп с поворотной параболической антенной в 1937 г. построил американец Гроут Ребер и с его помощью создал первую карту радионебосвода. Ультрафиолетовая астрономия возникла гораздо позже, где-то около 1970 г. Рентгеновская астрономия ведет начало с 1949 г. (или даже с 1978 г., если связать день ее рождения с запуском первого спутника с рентгеновским телескопом). Первый гамма-телескоп отправили в околоземное пространство в 1961 г. (на борту американского спутника Explorer 11). Космические лучи открыл сотрудник венского Радиевого института Виктор Гесс больше 100 лет назад, в 1912 г.

Остается упомянуть еще два мессенджера — нейтрино и гравитационные волны. О гравитационных волнах уже говорилось выше. Нейтринная астрономия началась с измерения плотности потоков этих частиц, возникших в ходе термоядерных реакций в ядре Солнца. Рэй Дэвис и его коллеги запустили первый детектор солнечных нейтрино в глубокой шахте в штате Южная Дакота в 1968 г. Позже появились приборные комплексы, способные зарегистрировать нейтрино, пришедшие из далекого космоса. Крупнейшая из этих установок, IceCube Neutrino Observatory, работает на Южном полюсе.

Классическая телескопическая астрономия за последние десятилетия тоже радикально изменилась. Новейшие телескопы-рефлекторы работают не только в видимом, но и в инфракрасном диапазоне — насколько это позволяет земная атмосфера. В третьем десятилетии XXI в. предполагается ввести в действие три телескопа-супергиганта (два в Чили и один на Гавайях). Сейчас телескопы стандартно оснащают (и будут оснащать) системами активной и адаптивной оптики: первая исправляет механические деформации зеркал, вторая компенсирует атмосферные возмущения, которые «размывают» приходящие световые сигналы. Эти системы, особенно адаптивная оптика, практически уравняли обсервационные возможности земной и космической астрономии в видимом и ближнем инфракрасном диапазонах. Теперь крупнейшие стационарные телескопы обеспечивают разрешение на этих длинах волн, сравнимое с разрешением «Хаббла» и не запущенного еще инфракрасного космического телескопа имени Джеймса Уэбба.