Стоит отметить, что новые телескопы изменили характер астрономических наблюдений. Ушел в прошлое романтический образ наблюдателя-одиночки, проводящего ночи в обсерватории, а дни — за проявкой и анализом фотопластинок. В наши дни астрономы используют телескопы так же, как физики — ускорители. Львиная доля работы приходится на эксплуатационщиков, которые наводят телескопы на заданную цель, снимают показания детекторов и передают их исследователям по цифровой связи. Более того, появились и автоматизированные телескопы, целиком и полностью управляемые дистанционно. Такие «безлюдные» наблюдения стали неотъемлемой частью многоканальной астрономии.
Итак, наблюдения посредством широкого набора мессенджеров вышли на передний край астрономии и астрофизики. Они обещают особенно богатый урожай в области изучения наиболее высокоэнергетичных космических процессов и событий, следствием которого может стать уточнение и даже пересмотр как астрофизических моделей, так и фундаментальных физических законов. Так, стоит отметить, что многоканальная регистрация слияния нейтронных звезд дала возможность показать, что отношение скоростей распространения световых и гравитационных волн по модулю отличается от единицы менее чем на 10–16. Этот результат не только вновь подтверждает основы эйнштейновской ОТО, но и позволяет отсеять несколько конкурирующих теорий гравитации. Уже запланированная модернизация исследовательских комплексов (к примеру, предполагаемое десятикратное увеличение чувствительности IceCube) и создание целой серии установок нового поколения (таких как гигантская подводная нейтринная обсерватория KM3NeT, сооружаемая в сорока километрах от Тулона) добавят немало фактов в копилку наших знаний о мире.
Наконец, появление MMA привело к обогащению социальной структуры науки о космосе. Оно стимулировало формирование новых крупных исследовательских коллабораций, таких как Европейская гравитационная обсерватория со штаб-квартирой в окрестности Пизы, объединяющая ученых из Италии, Франции, Нидерландов, Венгрии, Испании и Польши. Имеется также организационная структура в лице AMON (Astrophysical Multimessenger Observatory Network), созданная в 2012 г. под эгидой Пенсильванского университета. AMON ставит своей целью упрощение обмена информацией, полученной через различные космические мессенджеры, в реальном масштабе времени. О достигнутом уровне интеграции свидетельствует тот факт, что в «освоении» открытия GW170817 участвовали около 5000 специалистов. В общем, ММА — наука будущего.
При всей молодости ММА она уже может похвастаться немалым числом успехов. Конечно, первый и главный — детектирование гравитационных волн, возникающих при столкновении и слиянии черных дыр и нейтронных звезд. Но не только. Например, в январе 2018 г. появилось сообщение о том, что анализ данных, полученных в ходе детектирования гравитационных волн от столкновения нейтронных звезд, позволил оценить чрезвычайно важный для теоретической астрофизики верхний предел массы нейтронной звезды, составляющий 2,26 масс Солнца. Хотя эта оценка нуждается в подтверждении, ее получение методами многоканальной астрономии само по себе очень важно.
Стоит упомянуть еще одно важнейшее событие, которое дополнило достижения многоканальной астрономии. Весной 2019 г. члены международной научной коллаборации EHT обнародовали «портрет» горизонта событий исполинской черной дыры, расположенной в ядре галактики М87. Реализация этого проекта потребовала, помимо всего прочего, обработки петабайтного объема первичной информации, собранной в ходе совместной работы восьми радиоастрономических обсерваторий, расположенных на разных континентах. Таковы масштабы современной многоканальной астрономии. И это ведь только начало!
3. Астроликбез первого уровня
Природа создает белые карлики на последней стадии активного существования совсем других звезд. Поэтому я начну с кратких сведений о законах звездной эволюции, которые еще не раз будут расширяться и уточняться.
Все звезды загораются одинаково, но кончают жизнь по-разному. Рождение звезды происходит в результате гравитационного стягивания чисто газового (как это было в юной Вселенной) или газопылевого (в следующие космические эпохи) облака и последующего поджога термоядерного горения водорода в его центральной зоне. Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов. Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца. Максимальные массы новорожденных звезд исчисляются сотнями солнечных, но, согласно некоторым астрофизическим моделям, на заре мироздания они могли достигать и 1 млн.