Перспективы грядущего использования воды все требовательнее ставят вопрос о точном познании ее внутренней структуры. И науке поневоле все снова и снова приходится возвращаться к старой, как мир, проблеме, которая волновала умы еще средневековых флорентийских академиков: почему течет вода?
Казалось бы, нелепо спрашивать такое. Вода течет потому, что она жидкая. Но тогда возникает новый вопрос: а, собственно, что такое жидкость? Твердое или газообразное состояние вещества мы представить себе более или менее ясно можем. В нашем воображении возникают картины пространственного расположения атомов в кристаллах металлического сплава. Мы "видим" хаотическое движение молекул в газовых смесях. Но как выглядят частицы воды, каково их взаимное расположение? Конечно, существуют гипотезы (и мы их еще приведем), но они расплывчаты и экспериментально не подтверждены. Вопрос "почему течет вода?" остается пока трудным для науки.
Многие теоретики предпочитают проводить аналогию между жидкостью и твердым телом (например, плохая сжимаемость)" А при гидродинамических расчетах проектировщики и ученые-экспериментаторы применяют к жидкостям (в том числе и к воде) те же математические зависимости, что и к газам. Весьма нелогично.
Необходимость решения этого вопроса становится все более острой. Ибо, раскрыв структурное строение воды, мы вместо сомнительных, весьма приближенных и не всегда применимых аналогий, вместо грубых и неточных эмпирических зависимостей получим истинную картину происходящего. Появится возможность раскрыть закономерности, присущие только воде. Физики чисто аналитически, без всяких приближений получат точные математические зависимости. И лишь тогда откроется путь к созданию сверхпрочной воды как машиностроительного материала, путь к полимеризации воды - основы будущего текстильного производства.
Рис. 9. Агрегатные состояния вещества
И очень хотелось бы, чтобы, наконец, был создан такой протонный или иной микроскоп, с помощью которого удалось заглянуть в воду, увидеть ее молекулы, их движение, возникновение и распад. Наблюдают же физики-атомщики поведение единичных элементарных частиц - протонов, нейтронов, мезонов, позитронов, размеры которых в сравнении с молекулой воды, как байдарка в сравнении с океанским лайнером, Да, очень важно визуально исследовать молекулы воды.
А пока... для воды мы довольствуемся тем положением, которое изображено на рис. 9. Твердое тело (например, лед) имеет кристаллическое строение. В глазах частицы находятся в состоянии хаотического движения. Агрегатное состояние жидкости - пока загадка.
Секреты аномальных свойств воды
"Кирпичики" воды
Секрет воды, конечно же, следует искать в специфическом строении ее молекулы и в особенностях тех "кирпичиков", из которых складывается эта молекула.
Действительно, оба элемента - водород и кислород - заметно выделяются из многочисленной семьи химических элементов, представленной в периодической системе Менделеева.
Водород как "горючий воздух" был известен еще в XVI в. немецкому врачу и естествоиспытателю Парацельсу. Но подлинная природа этого газа была установлена лишь в 1783 г. Антуаном Лавуазье. За способность, сгорая, производить воду, "горючий воздух" впоследствии переименовали в "гидрогениум", т. е. рождающий воду.
Водород - единственный элемент, не имеющий даже одной полностью заполненной электронной оболочки. Из-за исключительной простоты его строения - один протон (ядро) и один электрон - ему присущи совершенно особые свойства. Между молекулами, образованными водородом с другими элементами, возникают единственные в своем роде водородные связи, сила взаимного притяжения которых по величине совершенно несравнима с взаимодействием всех прочих, неводородных молекул.
Забегая вперед, скажем, что именно наличие водородных связей не только определяет аномальные свойства воды, но и играет решающую роль в образовании живой материи - нуклеиновых кислот, молекул ДНК (дезоксирибонуклеиновой кислоты), белковых молекул.
Водород - один из наиболее распространенных элементов. Он обнаружен всюду: на других планетах Солнечной системы, на самом Солнце, в атмосферах всех доступных наблюдению звезд, в туманностях, межзвездной пыли.
Значение водорода во вселенной исключительно велико. Достаточно сказать, что он играет роль "космического топлива", дает жизнь, энергию звездам (в том числе и нашему Солнцу).
В настоящее время известно пять изотопов атома водорода с атомными массами 1 (протий), 2 (дейтерий), 3 (тритий), 4 и 6 (названия пока не даны). Наиболее распространенные соединения водорода (по крайней мере, на Земле) - вода, в основе которой находится протий.