Выбрать главу

Особенно легко растворяются в воде вещества, атомы которых соединены ионной связью. Это сравнительно слабые химические связи. Растворенная в воде, например, поваренная соль легко диссоциирует на ионы натрия (Na+) и хлора (Сl-). Соединиться вновь в воде этим ионам не суждено. Разделенные молекулами воды, они теперь притягиваются друг к другу в 80 раз слабее! К тому же вставшие на их пути молекулы Н2О обладают мощным дипольным моментом и без труда присоединяют к своим отрицательным концам положительные ионы натрия, а отрицательные ионы хлора соответственно исчезают в цепких "лапах" водородных протонов.

Пример растворения солей с ионной связью мы выделили потому, что такие связи составляют основу образования кристаллических структур, а из кристаллических структур в основном и сложена кора Земли, ее материки, горные хребты, дно океанов. Как уж тут не проявиться всеразрушающему свойству воды?

Не следует думать, будто водородные связи намертво удерживают одну молекулу воды относительно, другой. Если бы это случилось, вода при всех условиях оставалась бы сверхпрочным твердым телом. В интервале между 0 и +100 °С водородные связи ослабляют и рвутся под воздействием теплового движения самих молекул воды. Чем больше мы подводим тепла к воде, тем интенсивнее тепловое движение молекул и тем труднее водородным связям удерживать их на близком расстоянии друг подле друга. Наконец, тепловое движение окончательно берет верх над силами водородных связей, молекулы рассыпаются, разлетаются, вода перестает быть жидкостью, она обращается в пар.

Но чтобы полностью разрушить водородные связи, к воде нужно подвести значительное количество тепла - 2260 кДж/кг. Вот то обстоятельство, которое объясняет феноменальную теплоемкость воды, ее способность выполнять роль аккумулятора тепла в глобальных масштабах.

На поверхности воды "оголенные" протоны остаются "не у дела". Здесь им не на чем испытать силу своего воздействия: выше нет атомов кислорода. И тогда водородные протоны уподобляются притаившимся в ожидании жертвы осьминогам. Стоит только поднести к свободной поверхности воды предмет, в котором есть атомы кислорода, как протоны вцепятся в них "щупальцами" своих водородных связей. Этим и обуславливается способность воды смачивать те или другие вещества.

Прочность воды! Напомним, что согласно теоретическим расчетам, изготовленный из идеально чистой воды стержень диаметром 1 см должен был бы выдержать растягивающую силу в 37,49*104Н. Теперь уточним - подобные расчеты основываются на прочности водородных связей. Как перейти от теории к практике? Для этого нужно найти способ зафиксировать водородные связи. Вообще-то он известен - это охлаждение воды, превращение ее в лед (мы вернемся к этому позднее). Нам же хотелось бы придать воде не просто кристаллическую структуру, свойственную льду, а идеальную, упорядоченную структуру, которая и даст нам желанную сверхпрочность. Как сделать это, увы не придумали еще даже фантасты.

Что же, собственно, происходит при охлаждении воды? Прежде всего, здесь особенно наглядно проявляются ее аномальные свойства. Мы уже знаем, что вода, охлаждаясь от +100°С до + 4°С, как и все вещества в природе, сжимается, уменьшается в объеме. А затем от +4°С и до самого замерзания она увеличивается в объеме.

В чем тут дело? Конечно же, в специфичности водородных связей. Пока энергия теплового движения достаточно велика, "голому" водородному протону не удается зацепиться за атом кислорода "проплывающей" поодаль молекулы Н2О. "Багор с крючком", которым протон пытается пленить атом кислорода, либо, не выдержав, лопается, либо (и это чаще всего) оказывается слишком длинным. "Крючок багра" повисает над "головой" плывущего поблизости к протону кислородного атома.

Вот примерно какая ситуация должна иметь место, пока температура воды выше +4 °С. Молекулы воды имеют возможность скользить бок о бок, почти вплотную друг к другу. В это время в воде существует так называемый ближний порядок. Однако по мере охлаждения скорость движения молекул воды начинает падать. Теперь у протона есть время, чтобы вначале отодвинуть "багром" атом кислорода на длину "багра", а затем надежно зацепить его "крючком". Поскольку скорость движения мала, прочности "багра" будет вполне достаточно, чтобы остановить плененную молекулу Н2О и присоединить ее к собственной молекуле Н2О. Обратите внимание: молекула будет остановлена на строго определенном расстоянии, равном длине "багра".

У каждой молекулы Н2О два "голых" водородных протона, поэтому она захватывает сразу двух оказавшихся поблизости "соседок". Но одновременно на ее собственный атом кислорода будут переброшены два "багра" с других не менее расторопных протонов.