Выбрать главу

Именно они — включая в себя рациональные и иррациональные числа — не оставляют на оси ни одной свободной точки.

Мы вернемся к вещественным числам в следующей главе, так как они занимают важное место в развитии научных теорий Кантора. А пока рассмотрим вопрос: эквивалентно ли множество вещественных чисел множеству натуральных чисел (как в случае с целыми и рациональными числами)? Ответ стал одним из главных открытий Кантора: нет, эти множества неэквивалентны, то есть между ними нельзя установить взаимно однозначное соответствие.

Для доказательства недостаточно привести один пример неудавшегося соответствия, требуется показать, что провалом закончится любая попытка установить взаимно однозначное соответствие между натуральными и вещественными числами. Невозможно сделать так, чтобы каждое натуральное число соответствовало вещественному.

Для наглядности рассмотрим конкретный случай, в котором попытка установить соответствие оборачивается неудачей. Этот пример действителен для любой другой попытки, поэтому можно утверждать, что установить соответствие невозможно никоим способом. Попробуем найти пару для каждого вещественного числа из группы натуральных чисел и увидим, что какое-то вещественное число обязательно останется без пары (ниже показаны натуральные числа только от 0 до 4, хотя на самом деле этот список продолжается бесконечно).

Принцип, по которому распределялись числа, неясен, но это и не важно, так как данный метод работает вне зависимости от того, какое правило принято за основу. Обратим внимание на цифры после запятой.

Теперь рассмотрим диагональ, которая стремится от левого верхнего угла к правому нижнему. Она настолько важна в этом доказательстве, что само доказательство получило название диагонального метода.

Число, которое мы ищем (то, которому не найдется пары), начинается с 0,... а цифры после запятой будут зависеть от чисел, отмеченных по диагонали. Чтобы получить первую цифру после запятой, возьмем первую цифру диагонали и прибавим 1 (если это цифра 9, то запишем только 0). В нашем случае это цифра 3, поэтому число начнется с 0,4... Чтобы получить следующую цифру, прибавим 1 ко второму числу диагонали (опять же если это 9, мы запишем 0). Для третьей цифры числа возьмем третье число диагонали и так далее. В нашем примере мы получим 0,41162...

Число, которое мы только что высчитали, не соотнесено ни с каким натуральным, мы пропустили его при раздаче пар. Как мы можем быть в этом уверены? Дело в том, что найденное число не может быть тем, которое соотносится с 0, потому что они различаются первой цифрой после запятой; не может быть тем, которое соотносится с 1, потому что у них разные вторые цифры после запятой; не может быть тем, которое соотносится с 2, потому что у них разные третьи цифры после запятой, и так далее до бесконечности.

Поскольку для одного числа не нашлось соответствия, наш пример взаимно однозначного соответствия между множествами натуральных и вещественных чисел является неправильным. Любая другая попытка закончится неудачей по этой же причине, следовательно, между рассматриваемыми множествами нет взаимно однозначного соответствия.

Если немного изменить этот ход рассуждений, можно доказать, что множество чисел, содержащихся в любом, даже самом маленьком отрезке числовой оси, не эквивалентно множеству натуральных чисел. Множество вещественных чисел (или чисел одного отрезка оси) нельзя представить в виде последовательности, как в 1874 году заявил Кантор. Надо заметить, что доказательство, приведенное Кантором, было не совсем таким. Диагональный метод был описан лишь в 1892 году в статье Über eine elementare Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»).

АЛГЕБРАИЧЕСКИЕ ЧИСЛА

В статье 1874 года Кантор не говорил ни о целых, ни о рациональных числах. Он доказал, что вещественные числа не могут быть представлены как последовательность, и рассмотрел еще одно множество — множество алгебраических чисел.