И все же как раз ввиду этой незаменимости с течением десятилетий необходимость дать ему прочные логические обоснования, ясные и неоспоримые понятия, становилась все более насущной.
В XIX веке эту задачу пытались решить многие математики, среди которых были Карл Вейерштрасс (1815-1897), Рихард Дедекинд и Георг Кантор.
РИС. 12
Важнейшим вкладом Вейерштрасса в логическое обоснование исчисления было введение понятия предела, которое окончательно вытеснило бесконечно малые величины (хотя символ dx употребляется до сих пор). На практике предел заменяет идею бесконечно малого отрезка идеей отрезка, бесконечно малого только в потенции. То есть вместо того чтобы представлять прямоугольники с бесконечно малым основанием, мы представляем обычные прямоугольники, которые становятся все уже, пока не достигнут нужного размера. Опираясь на эту идею величин в динамике, то есть таких, которые становятся все меньше (бесконечно маленькими, но только потенциально), можно получить те же самые формулы, что и на основе бесконечно малых, но на более прочной логической основе.
Однако Вейерштрасс не говорил ни об отрезках, ни о прямоугольниках. Все свои идеи он выражал в числах и при помощи формул. Отрезок можно определить как часть числовой оси, ограниченной числами а и Ь. По Вейерштрассу же, отрезок является множеством (потенциально бесконечным) вещественных чисел между а и Ь геометрическое понятие отрезка не фигурировало даже в его рассуждениях. Понятие предела, например, которое мы применяем к отрезкам и прямоугольникам, Вейерштрасс выражал только в символах числовых операций.
Это объясняется тем, что в XIX веке исчисление все больше отдалялось от своей геометрической основы и в итоге окончательно от нее отошло. Это был длинный и трудный процесс, поскольку до этого классическая древнегреческая геометрия была неоспоримой основой любых математических рассуждений. В историю математики он вошел как «арифметизация исчисления» и заключался в том, что рассуждения геометрического типа (в них использовались статические объекты) заменялись на те, которые опирались исключительно на формулы и числа, в частности на вещественные числа (они позволяли рассуждать «в динамике», что было необходимо, например, в случае с понятием предела). Чтобы подвести под исчисление прочную логическую базу, необходимо было дать четкое определение вещественным числам, которые, в свою очередь, не имели никакого геометрического обоснования.
Что такое вещественные числа? Главное свойство вещественных чисел, которое их определяет и характеризует, заключается в том, что они заполняют всю числовую ось, то есть каждая точка на этой оси соответствует вещественному числу, а каждое вещественное число — точке на оси. Однако в конце XIX века это определение не было удовлетворительным, поскольку оно не должно было опираться на геометрические понятия. Но как можно донести мысль, что они заполняют всю числовую ось, не говоря ни о прямой, ни о точке? Этот вопрос был назван «проблемой континуума» (в то время континуумом называли числовую ось), и во второй половине XIX века он стал центральным вопросом исчисления.
В начале 1870-х годов в Галле Кантор, бывший учеником Вейерштрасса и, следовательно, тоже увлеченный проблемой логического обоснования исчисления, занялся поиском четкого определения вещественных чисел. Свои выводы он изложил в статье Ober die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen («Обобщение одной теоремы из теории тригонометрических рядов»), опубликованной в 1872 году в журнале Mathematische Annalen. До него Дедекинд тоже занимался тем же самым вопросом, что привело ученых к спору о первенстве.
Определение Кантора основано на понятии фундаментальной последовательности. Она состоит из вещественных чисел, и в ней по мере продвижения разница между любыми двумя членами, следующими друг за другом или нет, становится все меньше.
Возьмем, например, последовательность, образованную числами 3,1; 3,14; 3,141; 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535,... (в каждом последующем числе добавляется еще один знак числа π после запятой). С пятого числа все они начинаются с 3,14159... Это значит, что с пятого элемента разница между двумя членами последовательности (не важно, идут они один за другим или нет) начинается с пяти нулей после запятой, то есть она меньше 0,00001 (где только четыре нуля после запятой). Аналогично, начиная с шестого числа, разница между двумя членами последовательности меньше 0,000001; начиная с седьмого — меньше 0,0000001 и так далее.
Таким образом, 3,1; 3,14; 3,141; 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535... - фундаментальная последовательность.