Выбрать главу

Таким образом, если мы говорим, что покрытие ординалов второго класса «начинается с 01 и состоит из повторения этих цифр», это подскажет нам, какова будет только первая часть последовательности ω, ω + 1, ω + 2,... Перейдя κω + ω, мы должны указать способ начать покрытие заново. Оно может быть снова 01 или каким-то другим. И опять, когда мы дойдем до ω + ω + ω, мы должны будем начать все сначала; потом все сначала, дойдя до ω + ω + ω + ω, и так далее.

Если мы решим начинать каждый раз с 01, то у нас получится «базовое» покрытие N 010101..., которое будет повторяться несчетное количество раз.

ОБОБЩЕННАЯ КОНТИНУУМ-ГИПОТЕЗА

Континуум-гипотеза гласит, что 2X0 = X1. Кантор не смог ни доказать, ни опровергнуть это утверждение. Обобщенная континуум-гипотеза была сформулирована Кантором в его «Обоснованиях» и расширяет предыдущую. По ней, не только 2X0 = X1 но и 2X1 = X2, 2X2 = X3, 2X3 = X4 и так далее. При жизни ученый так и не узнал, верные эти гипотезы или ложные.

ПАРАДОКС КАНТОРА

Членами множества 'P(N) являются все множества, которые можно образовать с помощью членов N. Эту идею, разумеется, можно обобщить. Если А — произвольное множество, то множество, члены которого — все множества, которые можно создать посредством элементов А, будет называться 'P(A) (читается «части А»), Как 'P(N) имеет мощность 2X0 , так же можно доказать, что 'P(N) имеет мощность, равную «2 в степени мощности A». Если бы континуум-гипотеза была верной, то мощность 'P(R) равнялась бы 2X1 .

Мы знаем, что N счетное, a 'P(N) — нет; другими словами, мощность Τ(Ν) больше, чем Ν. Это тоже можно обобщить. Согласно теореме Кантора, мощность 'P(А) всегда будет больше А. Одним из следствий теоремы Кантора является то, что для любого множества всегда будет существовать большая мощность, но только в тех случаях, когда речь идет о множествах, образованных ординальными числами. Теорема Кантора позволяет распространить это утверждение на все множества, вне зависимости от того, какова природа их членов. Возьмем универсальное множество, то есть содержащее в себе все, абсолютно все возможное. По теореме Кантора, существует множество с большей мощностью. Но может ли быть мощность, превышающая мощность множества, в котором содержится вся Вселенная? Такого большого множества не может существовать, однако теорема Кантора утверждает обратное.

Таким образом, мы оказываемся перед противоречием. В теории множеств обнаруживается еще один парадокс, известный как «парадокс Кантора». В начале XX века был открыт третий парадокс, названный именем Бертрана Рассела. Без преувеличения можно утверждать, что он вызвал настоящий кризис в математике. В следующей главе мы рассмотрим все парадоксы теории Кантора и проанализируем влияние, которое они оказали на математику.

ГЛАВА 5

Парадоксы бесконечности

В одном письме 1902 года английский логик Бертран Рассел сформулировал очень простой вопрос, спровоцировавший, тем не менее, глубокий «кризис» в математической науке. Он затянулся почти на 30 лет, а его последствия ощутимы и сегодня. Вопрос Рассела был таков: «Является ли это множество, о котором я говорю, частью самого себя?»

В 1883 году, когда Кантор написал статью «Основы общего учения о многообразиях», он уже понимал, что его теория содержит как минимум один парадокс. Но что такое парадокс? На самом деле это слово используется в литературе и разговорном языке в разных значениях, не всегда совпадающих друг с другом. В логике парадокс обнаруживается, когда в рамках одной теории можно одновременно доказать существование и несуществование какого-либо объекта или когда свойства чего-либо противоречат друг другу. Таким образом, парадокс означает, что с точки зрения логики теория несостоятельна. В этом смысле можно утверждать, что Кантор действительно обнаружил в своей теории парадокс, или логическое противоречие, а это всегда плохой признак, поскольку он означает, что в основе теории есть ошибка — лакуна, которую надо обнаружить и устранить.