Выбрать главу

ЭТИМ ЗАНИМАЮТСЯ МАЛЫЕ И ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ?

Малые компьютеры, скомпонованные, приспособленные и запрограмированные для выполнения конкретных задач, стали теперь повсеместной принадлежностью лабораторий, промышленных предприятий. Однако возможности одного персонального компьютера ограничены. В инженерной практике существуют задачи различной, в том числе и большой, сложности.

Персональный компьютер можно сделать частью вычислительной системы (сети), включающей в себя много компьютеров. Каждый из них будет что-то делать сам, а другие данные получать от других частей системы.

Компьютеризация большинства сфер нашей деятельности — необходимейшая и неотложная задача. Для ее решения нам предстоит ликвидировать так называемую компьютерную неграмотность и научить практически все население страны пользоваться вычислительной техникой.

КАКОВЫ ОСОБЕННОСТИ СОВРЕМЕННОГО ЭТАПА РАЗВИТИЯ ПОЛУПРОВОДНИКОВОЙ ТЕХНИКИ?

Этот этап характеризуется в нашей стране большим объемом научно-исследовательских и технологических работ, направленных на дальнейшее совершенствование имеющихся и создание новых полупроводниковых приборов.

В последние десятилетия были проведены фундаментальные исследования тонких поликристаллических полупроводниковых пленок. Особенно обещающим является внедрение полупроводниковых пленок, созданных методом облучения подложки в высоком вакууме раздельными атомными и молекулярными пучками от нескольких источников, интенсивность которых позволяет выращивать пленки с заданным составом и свойством.

Такой метод нашел широкое применение при изготовлении полупроводникового материала для специальных диодов — полевых транзисторов, лазеров и интегральных оптических схем.

Современные интегральные схемы отличаются весьма незначительными размерами составных элементов. Дальнейшая миниатюризация включает в себя уменьшение линейных размеров размещенных на пластинке элементов, ширины соединительных линий и диаметров отверстий. Для размещения всех составных элементов на пленке применяют литографический способ. Наиболее употребительная форма литографии — фотолитография, при которой фотоэкспозиция меняет свойств, а светочувствительного вещества пленки. Световая экспозиция, естественно, не может передавать изображение, размеры которого меньше, чем длина волны используемого света. Поэтому еще недавно размеры порядка 1 или 0,5 мкм были крайним пределом размеров микроструктуры интегральной схемы.

В настоящее время в качестве метода, обеспечивающего создание значительно более тонкой структуры схемы, используют электронный или протонно-ионный пучки.

Увеличение плотности элементов на единичной площади монокристаллов приводит к уменьшению времени, необходимого для распространения сигнала от одной цепи к другой. Однако при этом возникают новые сложности. Известно, что каждая схема превращает определенное количество энергии в теплоту. Теплота в конечном итоге должна быть передана какому-то потоку, обычно воде или воздуху, которые выносят ее из системы. При миниатюризации процесс теплоотвода усложняется. Для обеспечения нормального охлаждения монокристаллы должны быть разнесены, но это увеличивает время прохождения сигнала от одного кристалла к другому.

А КАКОВЫ ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭТОЙ ОТРАСЛИ?

Существует несколько интересных предложений для устранения вышеуказанных проблем. Среди них — переход от полупроводниковой к сверхпроводящей электронике, предполагающий, что работа кремниевых устройств будет происходить при низких температурах (обычно при 77 К), т. е. при температуре кипения жидкого азота.

При низких температурах прежде всего возрастает проводимость. Понижение сопротивления металлов позволит сделать более узкими соединительные линии и снизит, таким образом, пространственные требования.

При низких температурах уменьшается мощность рассеяния энергии. А это значит, что для обеспечения тепло- отвода потребуется меньшая площадь. Еще над одним направлением в совершенствовании полупроводниковой техники работают физики. Это замена кремния и германия полупроводниковыми элементами III и V групп таблицы Менделеева. Подвижность электронов в полупроводниковых элементах этих групп значительно выше, чем в других. Так, в сравнении с кремнием подвижность электронов в них в 20 раз больше. В настоящее время арсенид галлия и фосфид индия уже применяют в микроволновых транзисторах и интегральных микроволновых схемах.