Выбрать главу

КАК РАБОТАЮТ ТУРБОРЕАКТИВНЫЕ ДВИГАТЕЛИ?

В работе турбореактивных двигателей (двигателей с газотурбинной установкой) использован следующий принцип. Струя газа, вытекая из сопла со скоростью большей, чем та, с которой она в него вступила, создает силу реакции, направленную в сторону, противоположную направлению движения струи. Эта сила реакции и используется для перемещения самолета, ракеты, снаряда.

Турбореактивный двигатель (рис. 9) состоит из пяти частей: входного устройства (диффузора) 1, компрессора 2, камеры сгорания 4, газовой турбины 5 и реактивного сопла 6. При полете самолета на двигатель набегает встречная струя воздуха. В диффузоре воздух затормаживается, его давление увеличивается. В компрессоре происходит 8—10-кратное дальнейшее сжатие воздуха. Часть воздуха направляется в камеру сгорания (примерно 1/5), куда при помощи форсунок 3 впрыскивается топливо (обычно керосин).

Рис. 9. Турбокомпрессорный реактивный двигатель

При запуске двигателя топливно-воздушная смесь воспламеняется от запальной электрической свечи, а в дальнейшем самовоспламеняется от соприкосновения с раскаленными газами и пламенем. При открытой с обоих концов камере сгорания процесс образования газов происходит при постоянном послекомпрессорном давлении. Так как температура горящего керосина более 2000 °C и такую температуру не могут выдержать лопатки турбины, то газы при выходе из камеры сгорания перемешиваются с основным потоком воздуха и температура газов снижается до 800–900 °C. Они со скоростью 600–900 м/с поступают на лопатки турбины, расширяются и приводят ее во вращение.

Другая часть энергии газов идет на повышение их скорости в реактивном сопле двигателя.

При выходе газов из сопла и образуется реактивная тяга, необходимая для полета самолета.

В сопле двигателя устанавливается подвижный конус 7, регулирующий выходное сечение, а следовательно, и скорость полета.

Сравнение работы турбореактивного двигателя с четырехтактным двигателем внутреннего сгорания показывает, что в двигателе внутреннего сгорания такты следуют друг за другом, тогда как в реактивном двигателе все процессы идут почти одновременно.

Сила тяги, развиваемая современными крупными воздушно-реактивными двигателями, огромна. Так, при расходе воздуха в 200 кг/с сила тяги составляет примерно 1,2∙105 Н. А это значит, что при полете со скоростью 1100 км/ч полезная мощность составляет 37 МВт (50 000 л. с). Получение такой мощности при использовании поршневых двигателей практически невозможно.

Сейчас газовые турбины стали применять на железнодорожном транспорте и в промышленности; не исключено их использование на грузовых и легковых автомобилях будущего.

ЧТО ТАКОЕ ВИНТОРЕАКТИВНЫЙ ДВИГАТЕЛЬ?

Для умеренных скоростей полета более выгодна комбинированная винтореактивная установка (рис. 10).

Рис. 10. Схема винтореактивного двигателя:

1 — компрессор, 2 — камера сгорания, 3 — турбина, 4 — сопло, 5 — редуктор, 6 — воздушный винт

Мощность газовой турбины винтореактивной установки значительно превышает мощность, поглощаемую компрессором. Избыток мощности турбины в этом случае передается на воздушный винт, соединенный с валом турбины через редуктор. При такой схеме скорость самолета создается как реактивным соплом (толкающая сила), так и воздушным винтом (тянущая сила). Естественно, что при осуществлении полета космических кораблей и ракет за пределами земной атмосферы кроме горючего на борту устанавливается и резервуар с окислителем (жидкий кислород, перекись водорода).

Для иллюстрации научно-технического прогресса в авиации приведем небольшую таблицу параметров некоторых самолетов: лучших истребителей конца Великой Отечественной войны Як-7 и Ла-11, а также современных реактивных пассажирских самолетов. Разница в классе самолетов выбрана нами для контраста преднамеренно.

В наше время сбылась мечта Циолковского о начале покорения космоса. Успехи отечественной науки и техники открыли век космических полетов. 4 октября 1957 г. был запущен первый в мире советский искусственный спутник, а 12 апреля 1961 г. впервые в истории человечества отправился в космический рейс советский космонавт Ю. А. Гагарин. От одиночных полетов к групповым, от производства единичных наблюдений к выходу в открытый космос и проведению технических и научных экспериментов, к созданию крупных кораблей многоразового использования, к решению насущных народнохозяйственных проблем — таков короткий, но богатый крупными успехами путь космической эры в истории человечества.