НО ВЕДЬ ЯДЕРНЫЕ ВЗРЫВЫ БЫВАЮТ И МИРНЫМИ?
Мирные ядерные взрывы можно использовать в самых различных видах работ, например при ликвидации аварийных газовых фонтанов, интенсификации добычи нефти, создании подземных хранилищ и наземных резервуаров для хранения воды и т. д.
В СССР ядерный взрыв мощностью 30 кт на глубине 1550 м обеспечил надежное перекрытие ствола аварийной скважины с расходом 12 млн∙м3 газа в сутки, что длительное время не удавалось сделать другими способами. С помощью ядерного взрыва мощностью более 100 кт был образован искусственный резервуар для воды общим объемом около 20 млн. м3.
За последние годы в связи с бурным расширением добычи газа, нефтепродуктов резко выросли потребности в разнообразных хранилищах. Оказалось, что для их создания удобно использовать подземные ядерные взрывы в пластах каменной соли, обладающих необходимыми упругопластическими свойствами. Так, полость объемом 20 тыс. м3 была образована на глубине 1140 м ядерным взрывом мощностью 15 кт.
Мирные взрывы, давая в руки человека новую область использования ядерной энергии, еще не раскрыли всех своих возможностей и продолжают детально изучаться учеными и инженерами.
А ЯДЕРНЫЕ РЕАКТОРЫ СТОЯТ НЕ ТОЛЬКО НА ЭЛЕКТРОСТАНЦИЯХ?
Широкие возможности использования ядерных реакторов для транспортных установок имеются на флоте. Об этом свидетельствует успешный опыт эксплуатации ледоколов «Ленин», «Арктика», а также на подводных лодках и других типах кораблей. Ядерные реакторы, работающие на быстрых нейтронах, применяют в г. Шевченко на Каспии для получения пресной воды из морской в объеме 120 тыс. т в сутки. Этой воды достаточно для обеспечения нужд города. Теплота от ядерного реактора может быть использована и в металлургической промышленности. Так, в настоящее время на Старооскольском металлургическом комбинате, где осуществляется бездоменный способ получения губчатого железа, требуется по технологическому процессу температура 950—1250 °C. Если для нагревания до таких температур не сжигать газ, а использовать энергию ядерного реактора, то экономия газа составит 50–55 %, а это даст большой экономический эффект.
В химической промышленности основным сырьем для производства азотных удобрений являются аммиак и метанол. Процесс их получения идет при 800–900 °C и также базируется на потреблении большого количества природного газа, 45 % которого расходуется как топливо. Подогревая смесь теплом ядерных реакторов, можно не только экономить газ, но и повысить общую долю полезной теплоты, устранить выброс в атмосферу токсичных продуктов горения газа и снизить стоимость аммиака и метанола.
Ядерные реакторы могут быть использованы для получения дешевого водорода, который в будущем станет основным видом топлива.
КОГДА НАЧАЛИСЬ ИССЛЕДОВАНИЯ ПО ФИЗИКЕ АТОМНОГО ЯДРА?
Распад ядер урана сопровождается рождением искусственных радиоактивных веществ. Да! Атомы родятся, живут и умирают. Разумеется, эти слова надо понимать в переносном смысле.
Впервые с превращениями в мире атомов, считавшихся раньше вечными неделимыми частицами веществ, физики столкнулись, когда А. Беккерелем и супругами Кюри была открыта радиоактивность (1896–1899). С тех пор обнаружено около сорока природных радиоактивных элементов. В 1934 г. Ирэн и Фредерик Жолио-Кюри доказали возможность создания искусственных радиоактивных элементов и радиоактивных изотопов.
После создания ядерных реакторов и ускорителей элементарных частиц было осуществлено практическое получение радиоактивных элементов. Например, радий крайне дорог, если его добывать обычным способом.
Теперь же в урановых котлах получают дешевые радиоактивные вещества, заменяющие сотни тонн радия. Ряд изотопов, например кобальт-90, молибден-99, полоний-210, специально получают при нейтронном облучении мишеней, состоящих обычно из более легких изотопов тех же элементов.
КАК ПРИМЕНЯЮТ ИЗОТОПЫ В НАРОДНОМ ХОЗЯЙСТВЕ?
Сейчас трудно назвать такую область нашего хозяйства, где не применялись бы изотопы. В СССР налажено производство около 4 тыс. наименований соединений на основе 156 радиоактивных и 240 стабильных изотопов, имеющих практическое значение.