Если преступники начнут прятать бриллианты по рецепту, указанному в повести, то их ждет жестокое разочарование. Никакими ухищрениями бриллианты нельзя сделать невидимыми в воде.
Обратимся к классической повести Г. Уэллса «Человек-невидимка», в которой та же проблема дана весьма квалифицированно. В главе XIX «Некоторые основные принципы» читаем:
«Если разбить кусок стекла и мелко истолочь его, оно станет гораздо более заметным в воздухе и превратится в белый порошок. Это происходит потому, что превращение стекла в порошок увеличивает число плоскостей преломления и отражения… Но если белый стеклянный порошок высыпать в воду, то он почти совершенно исчезнет. Стеклянный порошок и вода имеют почти одинаковый коэффициент преломления, и свет, переходя из одной среды в другую, почти не преломляется и не отражается. Вы делаете стекло невидимым, помещая его в жидкость с приблизительно таким же показателем преломления; всякая прозрачная вещь делается невидимой, если поместить ее в среду, обладающую одинаковым с ней показателем преломления».
Таким образом, Юлий Назаров (а до него и после него многие другие) сделал три грубые ошибки.
1. Бриллианты чистой воды называются так, потому что в них нет включений, мутинок, трещин, пузырьков и т. п. Другими словами, они прозрачны как чистая вода.
2. Ни у воды, ни у алмаза нет такой характеристики, как «угол преломления». Надо говорить: «показатель преломления».
3. Показатель преломления воды равен 1,333, а у алмаза эта величина достигает почти 2,4. Следовательно, в воде алмазы видны так же отчетливо, как на воздухе. А вот стеклянный порошок в воде становится почти невидимым, так как его показатель преломления равен 1,458.
Вы уже догадались, как определять показатель преломления различных кристаллов. Действительно, к микроскопу придается стандартный набор жидкостей с заранее измеренными показателями преломления. Исследователь погружает измельченный до состояния пудры кристалл в различные жидкости и рассматривает препарат под микроскопом. Крупинки перестают быть видимыми в том случае, когда показатели преломления кристалла и жидкости совпадают.
С преломлением света связана дисперсия (разложение) светового луча в кристалле.
Еще Ньютон показал, что солнечный свет, проходя сквозь стеклянную призму, распадается на ряд цветных полос, очередность которых школьники запоминают по магической формуле: «Каждый охотник желает знать, где сидит фазан». Разложение белого света связано с различным преломлением каждой его составляющей. Меньше всего преломляются красные лучи, больше всего — фиолетовые. Другими словами, показатель преломления кристалла для красного света имеет меньшее значение, а для фиолетового — большее. Так, показатель преломления алмаза в красном свете равен 2,408, а в фиолетовом — 2,452. Разница между этими числами (0,044) и называется дисперсией кристалла.
Именно величина дисперсии определяет великолепную игру цветов в алмазе. Когда смотришь на бриллиант, кажется, будто камень сверкает, горит желтыми и красными огоньками. Это называется игрой алмаза. Гранат демантоид играет еще сильнее, так как его дисперсия равна 0,057. Еще более высокой дисперсией обладают кристаллы рутила (0,280 — рекорд!).
Арсенал ученых. Основным методом исследования самоцветов является кристаллооптический анализ. Геммолог, вооруженный микроскопом, не только рассматривает мельчайшие подробности в строении кристаллов, но также измеряет многие оптические константы. Определять показатель преломления кристаллов вы уже умеете. Если необходимо исследовать взаимоотношение самоцвета с окружающими минералами, то вначале делают шлиф. Для этого из горной породы вырезают небольшой прямоугольник толщиной около 0,03 миллиметра. Его наклеивают на стекло с помощью бесцветной прозрачной смолы (канадского бальзама), сверху прикрывают другим стеклом, более тонким. Шлиф готов. Его можно долго хранить.
Полезное увеличение оптических микроскопов достигает 2000 крат. Однако при столь большом увеличении контуры кристаллов расплываются, смазываются, теряют четкость. Чтобы рассмотреть более мелкие детали, применяют электронный микроскоп, увеличивающий в десятки, сотни тысяч, даже в миллион раз. Вместо световых лучей используют электроны, ускоренные в условиях глубокого вакуума. Вместо оптических линз в электронном микроскопе стоят магнитные конденсоры, которые фокусируют пучки электронов. С помощью электронного микроскопа ученые получили возможность разглядеть объекты размерами 200–300 пикометров. При благоприятных условиях можно даже сфотографировать молекулы некоторых веществ.