Выбрать главу

Итак, зная пространственное устройство каждого из 20 типов элементарных звеньев белковой цепи, мы можем попытаться построить с помощью «стереоконструктора» модель целой молекулы белка, представляющую собой чрезвычайно длинную шарнирную систему, в сотнях или даже тысячах мест допускающую вращение одной части молекулы относительно другой. Очевидно, подобно молекулам всех полимеров, такая молекула должна обладать гибкостью и способностью принимать самые разнообразные пространственные структуры (не откажем себе в удовольствии повторить еще раз — КОНФОРМАЦИИ!) от полностью вытянутой до скатанной в клубок. Причем, помимо внутренних вращений в главной валентной цепи — остове, возможны еще вращения боковых радикалов.

Несомненно, что белковая молекула даже в чисто механической трактовке — объект очень сложный, и, глядя на ее модель (правильнее было бы сказать карикатуру), невозможно просто умозрительно предсказать какие-нибудь особенности пространственной подвижности молекулы. С другой стороны, все подробности геометрического строения элементарного звена, характерные для цепочки белка, принципиально не выделяют ее в ряду прочих полимеров. В смысле гибкости и пространственной подвижности цепочки других полимеров тоже заметно ничем от нее не отличаются, и все же ни один из них не обладает теми замечательными свойствами, которые присущи белкам.

Объяснить это можно только одним способом. Цепи синтетических полимеров состоят либо из звеньев одного типа

А А А А…

Б Б Б Б…

и т. д., либо из регулярных комбинаций разных звеньев

А Б А Б А Б А Б…,

либо, наконец, из случайно чередующихся звеньев различных типов

А Б Б А А А Б Б А Б…

В каждой молекуле белка определенного сорта, как мы знаем, чередование различных звеньев-аминокислот строго упорядоченное. Однако никакой регулярности, периодичности в чередовании различных остатков, если угодно, «правильности» их расположения, в белках не наблюдается.

Поиски такого рода закономерностей проводились хитроумнейшими методами математической статистики и не дали никаких результатов.

Кстати, совершенно аналогичное разочарование постигло в сравнительно недавнее время литературоведов (вот и еще один стык наук!): все те же хитроумные математические методы потерпели полное фиаско в попытках установить сколько-нибудь существенные закономерности расстановки отдельных букв в произведениях великих писателей.

Чтобы окончательно покончить с проблемой регулярности белковых последовательностей, оговоримся, что все сказанное не относится к белкам, выполняющим в организме чисто механические функции, например, тем, которые составляют основу сухожилий (коллаген) или волос (кератин). В этих белках существует четко выраженная регулярность аминокислотной последовательности, что имеет большое значение в связи с их механическими свойствами.

В особой упорядоченности аминокислотных остатков белковой цепи скрыт ключ к пониманию свойств белка. Подтверждением тому могут служить синтетические полипептиды — соединения, имеющие тот же тип мономерных звеньев, что и белковые молекулы, но с монотонным или случайным их чередованием. По всем своим свойствам они являются самыми заурядными полимерами. Поскольку каждый белок, обладающий каким-то экстраординарным свойством (а других белков просто не бывает), выполняет в организме определенную функцию, его присутствие в организме должно быть «предусмотрено» тем, что в последовательности нуклеотидов зашифрована (и мы теперь знаем, как именно) его аминокислотная последовательность. Точнее говоря, в последовательности нуклеотидов ДНК закодирована последовательность РНК, в последовательности РНК — аминокислотная последовательность белка, в последовательности белка… (невольно вспоминается философская фраза Дерсу Узала, охотившегося на медведя, занятого рыбной ловлей: «Чего-чего рыба кушай, медведь рыба кушай, мы хотим медведь кушай…»). В самом деле, что же (в свою очередь) кодирует аминокислотная последовательность?