Третий основной тип конформаций остова менее стабилен — по данным расчета, ему соответствуют довольно высокие значения энергии. Ну и, разумеется, есть исключения из общего правила «трех конформаций»: остаток глицина, конформационная подвижность которого, как уже говорилось, намного больше, чем у прочих остатков, и пролин, для которого возможны лишь два основных типа конформаций.
Если в полипептидной цепи какой-нибудь из этих типов конформаций повторяется у всех остатков подряд, получаются периодические структуры, найденные Л. Полингом, — о них уже неоднократно вспоминалось в предыдущих главах. Два самых стабильных типа конформаций соответствуют вытянутой слоисто-складчатой структуре (β-структуре) и правозакрученной α-спирали; третья, менее стабильная, конформация порождает левозакрученную α-спираль. И действительно, как показывает эксперимент, цепочки полипептидов гораздо охотнее сворачиваются в виде именно правой α-спирали. Причем в правую форму сворачиваются полипептиды, образованные остатками L-аминокислот; если же для их построения использованы D-аминокислоты, более стабильной становится левая α-спираль. И это обстоятельство также подтверждено расчетом.
(Между прочим, уже на основании этих результатов можно было бы высказать кое-какие соображения по поводу асимметрии аминокислот, образующих белки; мы, однако, отложим этот вопрос до следующей главы, а сейчас продолжим разговор о расчете пространственной структуры белков.)
Итак, расчет позволил классифицировать возможные способы изгиба остова полипептидной цепи, характерные для отдельных аминокислотных остатков. Помимо этого, оказалась возможной такая же точно классификация конформаций боковых радикалов всех остатков — разработка конформационного алфавита третичных структур белков была тем самым полностью завершена. «Победа!» — следовало бы воскликнуть конформаторам, но, повторяем, иллюзиям детства суждено было рассеяться очень скоро.
Горестный перечень разочарований, постигших конформаторов на этапе, завершившемся созданием конформационного алфавита, начнем с замечания о том, что этот алфавит оказался довольно громоздким: по объему символов он скорее напоминает китайскую азбуку, чем какую-либо из европейских. В самом деле, рассмотрим внимательно остаток аминокислоты аргинина:
Как мы уже писали, возможны три типа стабильных конформаций пары углов внутреннего вращения в основной полипептидной цепи; кроме того, каждый из углов внутреннего вращения в боковой цепи (а их всего четыре — напоминаем, что вращение возможно вокруг каждой одинарной связи) может в любой из этих ситуаций принимать одно из трех «разрешенных» значений. А это значит, что всего остаток аргинина может иметь 3·3·3·3·3 = 243 сравнительно устойчивых конформации!
Правда, для других аминокислот (за исключением лизина) это число заметно поменьше, но все же общее количество подлежащих рассмотрению типов конформаций всех остатков приближается к тысяче.
Допустим, однако, что число возможных конформаций каждого остатка в среднем всего десять. Каков же окажется объем вычислений, соответствующих задаче расчета структуры белковой молекулы — пусть даже не очень большой, всего-то из ста аминокислотных остатков?
Вспомним, что наша задача будет состоять в том, чтобы из всех возможных конформаций молекулы выбрать ту, которой соответствует наименьшая энергия внутримолекулярных взаимодействий, и что сосчитать эту энергию на основе попарно-аддитивного приближения в принципе не очень сложно. Дело только за тем, чтобы прилежно перебрать все конформации молекулы, представляющие собой все возможные сочетания конформаций образующих ее остатков, каждый раз вычисляя величину соответствующей энергии внутримолекулярных взаимодействий, и по завершении этой нехитрой работы мы будем точно знать наиболее стабильную конформацию.
Ну что ж, в прилежании биологам как будто нельзя отказать, можно бы, кажется, и приняться за дело. Каждый остаток, значит, может принимать одно из десяти состояний, а всего остатков — сто. Если состояния отдельных остатков пронумеровать цифрами от 0 до 9, каждая конформация всей молекулы может быть условно обозначена каким-то стозначным числом:
937052… 362.
Предположим теперь, что вычисление энергии внутримолекулярных взаимодействий в каждой конформации занимает одну секунду. Это, конечно, чудовищный обман — с учетом всех обстоятельств такой расчет должен длиться часами или даже сутками на самой современной машине. Но не будем тем не менее мелочными, итак, одна секунда. Следовательно, для перебора всех возможных конформаций стоостаточной белковой молекулы нам понадобится 10×10×10… ×10 = 10100 секунд.