— По сути дела, да.
Ф. Жолио-Кюри еще в 1935 году в своей Нобелевской лекции говорил: «Если заглянем в прошлое и охватим взором прогресс науки, который происходит все более и более нарастающими темпами, мы получим право думать, что исследователи, которые создают или разрушают элементы по своему желанию, сумеют добиться превращений, имеющих характер взрыва, добиться настоящих цепных реакций. Если мы сможем осуществить подобные превращения, то удастся высвободить огромное количество энергии, которую можно будет использовать».
Не одиночные реакции деления ядра урана, а цепные реакции, в которых принимают участие атомные ядра большой массы вещества, — вот единственная тропинка, которая могла привести к практическому использованию ядерной энергии!
До открытия реакции деления об этой тропинке ничего не было известно. Но в 1939 году Ф. Жолио-Кюри уже знал, где ее искать.
Деление каждого ядра урана сопровождается рождением нескольких нейтронов. Казалось бы, эти нейтроны могли, в свою очередь, вызывать деление новых ядер, и в реакцию была бы вовлечена большая масса вещества. Однако окончательный вывод о том, могут ли развиваться цепные реакции в уране, зависел от количества нейтронов, сопровождающих деление.
Итак: вопрос: «Получит или не получит человечество новый источник энергии?» — можно было поставить более конкретно: «Сколько нейтронов испускается при делении одного ядра урана?» Окажись их в среднем меньше двух с половиной — и реакция деления представляла бы только чисто научный интерес.
Ф. Жолио-Кюри в сотрудничестве с Г. Альбаном установил, что при делении урана испускается в среднем около трех вторичных нейтронов. И этот факт сразу показал, что цепные ядерные реакции оказались реальным способом получения ядерной энергии.
Но, как и всякое открытие в любой области науки, цепные ядерные реакции деления можно было использовать как в мирных, так и военных целях. Настало время, когда человечество должно было сделать свой выбор: строить реакторы, где ядра урана под контролем непрерывно отдавали бы избыток энергии, или создавать бомбы, в которых неконтролируемые цепные реакции вызывали бы взрыв колоссальной разрушительной силы. Вторая мировая война способствовала осуществлению трагического предвидения поэта А. Белого. И лишь после окончания войны были перевернуты последние страницы истории овладения ядерной энергией. Атомные ядра приобрели, наконец, мирную профессию, и приобрели ее поначалу в Советском Союзе.
Первая в мире ядерная электростанция — Обнинская — продемонстрировала всему миру, какую пользу может принести людям управляемая ядерная реакция.
Но, подарив людям ядерную реакцию, физики еще очень мало знали о самом ядре. Бытовые подробности жизни крепко спаянного ядерного коллектива нуклонов оставались неизвестными. Как протон и нейтрон ведут себя в ядре, как общаются друг с другом, каким они подчиняются законам?
Исследователи вправе были ожидать, что познание этих законов даст им возможность управлять атомными ядрами, по желанию создавать необходимые людям вещества, одним словом, «вить из ядра веревки».
Многие полагали, что кратчайший путь к этой цели ведет через тщательное изучение взаимодействий двух отдельных нуклонов. Наблюдения за столкновением протона с протоном, протона с нейтроном, казалось, должны были в значительной мере прояснить взаимоотношения между этими частицами в ядрах.
В крупнейших лабораториях мира были созданы ускорители протонов. В огромных установках, похожих на заводы, с помощью сложнейших приборов ученые следили за моментом встречи между двумя свободными нуклонами. Частицы сталкивались, разлетались, образовывались новые частицы, а тайна строения ядра оставалась неразгаданной. Думали, что еще немного терпения, еще серия экспериментов, еще сильнее разогнать протоны, и можно будет понять основные принципы поведения нуклонов в ядрах. Но… наращивая свою мощь, ускорители увеличивались в размерах, разгоняемые ими протоны становились все более быстрыми, наблюдения накапливались, а ядро продолжало оставаться столь же загадочным и полным тайн, как улыбка леонардовской Моны Лизы.
Ожидания физиков-ядерщиков не оправдались. Мимолетные встречи нуклонов большой энергии мало походили на отношения, сложившиеся в долгоживущем сгустке ядерных нуклонов, пропитанном мощными ядерными силами. Чем с большей энергией сталкивались нуклоны, тем с большей вероятностью рождались новые частицы, не имевшие никакого отношения к ядру.