Выбрать главу

Через 10–20 секунды разбушевавшаяся ядерная капля успокаивалась и переходила в нормальное состояние после испускания нейтронов со строго определенной энергией.

Такое освещение событий, происходящих при слабом взаимодействии мю-мезона с ядром, подкупало тем, что вычисленное на его основе значение вероятности реакции захвата мю-мезона впервые совпало с его экспериментальным значением.

Проверить новую гипотезу можно было только одним путем: обнаружить группы нейтронов, появление которых в этой реакции она предсказывала.

За поиски нейтронов, вылетающих из мишени, облучаемой мю-мезонами, взялись физики-экспериментаторы Лаборатории ядерных проблем ОИЯИ под руководством кандидата физико-математических наук В. Евсеева.

Интернациональная группа советских и польских физиков подготовила для работы на синхроциклотроне специальную установку для обнаружения нейтронов в реакции захвата мезонов атомными ядрами. В прозрачном кристалле стильбена, вещества, насыщенного водородом, пролетающий нейтрон передает свою энергию ядру атома водорода — протону. На движущийся заряженный протон прибор реагирует мгновенно. В стильбене возникает световая вспышка, которая, усиливаясь в особой лампе — фотоумножителе, превращается в электрический импульс.

Но световая вспышка может возникнуть в кристалле при попадании в него и любой посторонней заряженной частицы. Поэтому электрические импульсы от вспышек в приборе подвергались строжайшему контролю в уникальных электронных схемах, созданных специально для этого эксперимента. По форме импульса схемы надежно отсортировывали протоны от фоновых частиц. Затем электронный анализатор импульсов определял энергию этих протонов. А электронно-вычислительная машина по особой программе реконструировала спектр нейтронов по измеренному энергетическому спектру протонов.

Успешными оказались первые же опыты на ускорителе. Помещая мишени из серы, кальция или кислорода в пучок мю-мезонов, дубненские физики с волнением обнаружили долгожданные группы нейтронов. Эксперимент полностью оправдал надежды теоретиков.

Выступая на Международной конференции по физике высоких энергий и структуре ядра в Дубне, профессор В. Балашов сказал: «Теоретикам всегда свойственно фантазировать. Но я не думал, что эксперименты по захвату мю-мезонов ядрами будут поставлены со столь высокой точностью, что их можно будет сравнить с теорией».

Открытие, сделанное физиками Дубны, и экспериментальные результаты, полученные в других лабораториях, подтверждали очень важную для ядерной физики закономерность. И в электромагнитных, и в слабых, и даже, с небольшой вероятностью, в сильных взаимодействиях образуются атомные ядра, которые всю дополнительную энергию расходуют только на согласованные движения своих частиц.

Коллективные колебания нуклонов при высокой энергии возбуждения — это универсальное свойство ядерного вещества, связанное с особой природой ядерных сил.

— Сначала физики радовались тому, что научились добывать из ядер энергию, а теперь — непонятно почему — радуются, когда ядра ее поглощают.

— Изучение возбужденных ядер имеет большое фундаментальное значение для науки, так как обогащает представления ученых о ядерных силах. Но изомерные ядра, обладающие способностью довольно долго удерживать полученный избыток энергии, могут быть использованы в практических целях.

— Я что-то ничего не слышал об «аккумуляторе» на возбужденных изомерных ядрах.

— И не могли ничего слышать. В качестве длительно работающего аккумулятора ядерной энергии оказалось выгодней использовать радиоактивные изотопы. А изомеры чрезвычайно пригодились после того, как удалось наладить связь на гамма-квантах между одинаковыми ядрами.

До сих пор мы говорили и продолжаем говорить о проблемах, относящихся непосредственно к атомным ядрам, но сейчас крайне необходимо вспомнить о давно открытом в мире атомов избирательном, или, как называют его физики, резонансном, поглощении фотонов с определенной энергией. Свет, испущенный возбужденным атомом, с максимальной вероятностью захватывается другим атомом того же химического элемента. Это естественное поведение любых квантовых объектов.