«Проблема управляемого термоядерного синтеза по своей трудности оставляет позади все другие научно-технические проблемы, порожденные успехами естествознания в XX веке», — говорил академик Л. Арцимович.
Идея о том, что горячую плазму можно «удержать в руках» с помощью магнитного поля, возникла примерно четверть века назад. Плазма получается при достаточно сильном нагревании газа. Уже при температуре в несколько тысяч градусов начинают «рваться» электромагнитные узы, удерживающие электроны вокруг ядер, а при температуре в миллионы градусов практически все атомы распадаются на составные части. Любой, даже очень маленький, кусочек плазмы остается электрически нейтральным, но в ней хаотически движутся не нейтральные атомы, а одинаковое число положительно заряженных ядер и отрицательно заряженных электронов. И те и другие частицы покорны магнитному полю, и поэтому казалось, что с его помощью легко управлять плазмой.
Сначала идея о магнитной термоизоляции плазмы была реализована в обычной разрядной трубке, в том самом приборе, в котором Дж. Дж. Томсон обнаружил электроны, оторванные от атомов в результате ионизации, и физики впервые в конце прошлого века получили вещество в четвертом состоянии. Через дейтериевый газ, находящийся в трубке, в течение миллионной доли секунды пропускали мощный электрический разряд. Ток, нагревая газ, создавал плазму, а магнитное поле тока отрывало ее от стенок и стягивало к оси трубки. Теперь плазма уже не касалась холодных стенок, и ее удавалось нагреть до миллиона градусов. Так впервые в лаборатории ученые получили вещество при температуре, равной температуре солнечной короны. Происходили при таком нагреве термоядерные реакции синтеза или нет?
Главный признак начала термоядерного слияния ядер — появление нейтронов. И при образовании ядер гелия из двух слипшихся дейтонов, и в реакции синтеза дейтона с ядром самого тяжелого изотопа водорода — трития обязательно рождаются нейтроны. Появления в горячей плазме этих нейтронов и ждали с нетерпением экспериментаторы.
И вот 4 июля 1952 года в одной из серий очередных опытов в Институте атомной энергии имени И. Курчатова бездействовавшие до этого момента счетчики нейтронов заработали. Казалось, заветная цель — осуществление управляемой термоядерной реакции — близка. Но ученых ждало жестокое разочарование.
Детальный критический анализ, проведенный самим руководителем работ по управляемому термоядерному синтезу академиком Л. Арцимовичем, показал, что полученные нейтроны не термоядерного происхождения, основная масса дейтонов не успевала прогреться до температуры, позволяющей им вступить в термоядерные реакции синтеза, плазма погибала немного раньше. В чем же дело?
А дело оказалось сложным и очень запутанным.
Плазма — это спаянные электрическими силами легкие электроны и тяжелые атомные ядра. Едва возникнув в разрядной трубке, она благодаря «усилиям» всех своих частиц вытесняет магнитное поле тока из своего объема. А вытесненное поле с силой давит на поверхность плазмы и формирует плазменный жгут. Плазменный жгут не соприкасается со стенкой и как будто может достаточно долго существовать при большой температуре.
Но сдавленная магнитным полем плазма совершенно неустойчива. Малейший изгиб плазменного шнура приводит к тому, что давление магнитного поля в месте изгиба становится еще сильнее, деформация усиливается, шнур теряет форму, и раскаленные частицы расплескиваются по стенкам трубки.
В первой же попытке обуздать раскаленное вещество, находящееся в четвертом состоянии, ученые столкнулись с его коварным характером и потерпели неудачу. Ясно было, что ответ на вопрос: «Возможно ли осуществление управляемой термоядерной реакции?» — можно получить только после исследования свойств самой плазмы.
Так возникла новая наука — физика высокотемпературной плазмы, о которой Л. Арцимович как-то полушутя сказал, что ее не следует причислять к естественным наукам, так как предметом естественных наук являются объекты, созданные природой, а предметом физики плазмы — объекты, созданные экспериментаторами.
Сейчас в лабораториях мира работают больше сотни магнитных «бутылок» — разных типов ловушек для плазмы. Одни из них, например, такие, как американская «Сцилла», похожи на разрядную трубку, где плазму удерживают с помощью дополнительного проводника с током. Однако горячая плазма живет в ней всего лишь несколько миллионных долей секунды.
В других, например, в советской системе с магнитными пробками «Огра», готовая плазма впрыскивается в трубку, у торцов которой создается более сильное поле, чем в центре. Заряженные частицы, как свет от зеркала, отражаются от области сильного магнитного поля, и плазма мечется между магнитными пробками.