Раз уж мы предприняли исторический экскурс, нельзя не упомянуть работу советского ученого, ныне академика В. А. Котельникова «О пропускной способности „эфира“ и проволоки в электросвязи», опубликованную в 1933 году. Почти во всех трудах по общей теории связи и теории информации ссылаются на работу Н. Винера «Экстраполяция, интерполяция и сглаживание стационарных временных рядов», опубликованную в 1949 году. Для полноты картины стоит напомнить, что работа академика А. Н. Колмогорова «Интерполирование и экстраполирование стационарных случайных последовательностей» вышла в 1941 году.
Суть, конечно, не в том, кто первым сказал «Э!». Надо разобраться в главном — что такое информация. Для этого вернемся к задаче о стрельбе по самолетам. Предположим, что точка, где находится самолет в данный момент времени, известна. Самолет виден невооруженным глазом, и с помощью угломерных инструментов можно измерить его координаты. Как правильно отметил Н. Винер, целиться в эту точку бессмысленно, потому что скорости снаряда и самолета имеют один и тот же порядок (то же самое тем более справедливо для современных ракет) и за то время, пока снаряд долетит до точки прицеливания, самолет отойдет от нее на достаточно большое расстояние. Следовательно, целиться надо не в ту точку, где самолет находится в момент выстрела, а в ту, где он окажется в момент, когда снаряд достигнет места встречи. Но как узнать координаты точки встречи?
Трудами многих ученых, среди которых значительное место занимают работы А. Колмогорова и Н. Винера, была создана теория временных рядов. Не вдаваясь в подробности, скажем, что наглядным примером временного ряда могут служить последовательные положения самолета, совершающего маневр. Теория временных рядов установила, что, зная прошлые значения членов временного ряда, можно вынести суждение о значениях будущих его членов. В нашем случае, зная прошлые положения самолета (по условию задачи они известны), можно предсказать его будущее положение.
На основании теории временных рядов или какой-нибудь другой теории мы действительно можем узнать будущее положение самолета и вести прицельную стрельбу в эту точку. Знать — это располагать информацией об исследуемом предмете. Вряд ли кто-нибудь станет спорить с таким определением. А коли так, то теория временных рядов, казалось бы, дает возможность получить определенную информацию — информацию о будущем положении самолета, — которую мы не можем получить в результате наблюдений или, скажем, с помощью интуиции.
Представьте себе, что в некоторый момент времени вы наблюдаете самолет в определенной точке пространства. Скорость самолета ограничена, и, следовательно, через десять секунд он не может отлететь от этой точки на расстояние, большее чем пять километров. Нам неизвестно, какое направление дальнейшего полета выберет летчик, тем не менее мы можем утверждать, что через десять секунд самолет заведомо окажется где-то внутри шара радиусом пять километров. Как видите, что-то все-таки можно предсказать, не пользуясь ничем, в том числе и теорией временных рядов, а зная лишь, как говорят, тактико-технические данные современных самолетов. Добавим, что для прицельной стрельбы достаточно знать проекцию этого шара на плоскость предполагаемой траектории полета снаряда. Такое знание называется априорным: наблюдая самолет в данной точке и зная его предельную скорость, вы одновременно знаете радиус некоторой окружности, внутри которой он находится.
Проведем вычисления на основании теории временных рядов. Как бы аккуратно их ни проделывать, вы в результате не узнаете точки, в которой самолет будет находиться через десять секунд. Вы снова узнаете лишь радиус окружности, в пределах которой он будет находиться. За количество информации, полученной в процессе вычислений, предлагается принять отношение радиуса окружности, о котором вы знали до вычислений, к радиусу окружности, полученному в результате вычислений.
Неважно, кто первый предложил такую меру количества информации — Н. Винер или другой американский ученый — К. Шеннон. На первый взгляд правомочность использования, такой меры не вызывает сомнений. Не проведя вычислений, вы знали, что самолет будет находиться где-то внутри круга радиусом пять километров. Проведя вычисления, вы знаете, что самолет будет находиться опять-таки внутри круга, но радиусом, скажем, пятьдесят метров. Произошло несомненное уточнение будущего положения самолета. А раз произошло уточнение, значит, ясно, что вы получили информацию и тем ее больше, чем точнее вы знаете будущее положение самолета.