Выбрать главу

Связь между ДНК, РНК и белком заключается в следующем: ДНК служит матрицей для синтеза РНК, а РНК, в свою очередь, является матрицей для синтеза белка. Таким образом, заключенная в ДНК информация в два этапа перекодируется в белки, которые и выполняют всю работу в клетках и целых организмах.

Сначала я хочу рассказать вам о хромосомах, генах и ДНК (рис. 3.1). Любую очень длинную молекулу ДНК в клетке называют хромосомой. Гены представляют собой отдельные фрагменты молекулы ДНК. ДНК состоит из двух нитей, которые составлены из "кирпичиков", называемых нуклеотидами. Каждый нуклеотид содержит одно основание, а всего существует четыре вида этих оснований, которые обозначают буквами А, С, G и Т. Нити ДНК удерживаются вместе за счет сильных парных взаимодействий между основаниями, находящимися на противоположных нитях. В клетке может быть всего одна хромосома (как в E. coli), а может быть гораздо больше (у нас с вами их двадцать три пары). Уникальная последовательность нуклеотидов в ДНК (например, ACGTCGAATT...) определяет уникальную информацию, закодированную в каждом гене.

Рис. 3.1. Хромосомы, ДНК и гены. Хромосомы — это длинные молекулы ДНК, состоящие из тысяч генов. ДНК состоит из двух нитей, образованных нуклеотидами (А, С, G и Т), которые удерживаются вместе за счет связей между основаниями на противоположных нитях. Отдельные гены — это участки последовательности ДНК разной длины. Рисунок Лианн Олдс.

Теперь давайте посмотрим, как происходит расшифровка заключенной в ДНК информации.

Первая стадия расшифровки информации гена называется транскрипцией. Этот процесс заключается в синтезе однонитевого транскрипта матричной РНК (мРНК), который комплементарен одной из двух нитей молекулы ДНК. Вторая стадия заключается в переводе последовательности мРНК в последовательность белка; этот процесс называется трансляцией (рис. 3.2). Для перевода РНК в белок используется универсальный генетический код. "Кирпичиками" для строительства белков служат аминокислоты, соединяющиеся в длинные цепи. Между последовательностью оснований в ДНК и последовательностью аминокислот в белке имеется прямое соответствие. Последовательность аминокислот в каждом белке определяет его форму и свойства: переносит ли он кислород, формирует мышечные волокна или расщепляет лактозу.

Рис. 3.2. Расшифровка информации, заключенной в ДНК, осуществляется в два этапа. На первом этапе происходит транскрипция ДНК с образованием матричной РНК (мРНК). На втором этапе происходит трансляция мРНК в молекулу белка. Рисунок Джоша Клейса.

Вернемся к Е. coli и попытаемся понять, каким образом бактерии удается синтезировать β-галактозидазу только тогда, когда в среде присутствует лактоза. Моно и Жакоб поняли, что синтез фермента контролируется переключателем, находящимся в гене β-галактозидазы. Когда лактозы нет, переключатель выключен, когда она есть — он включается. Переключатель состоит из двух основных компонентов: белка, называемого lac-репрессором, и короткой последовательности ДНК вблизи гена β-галактозидазы, с которой связывается белок lac-репрес-сор. Когда белок-репрессор связывается с этой последовательностью ДНК, ген выключается (репрессируется) и синтеза РНК и белка не происходит. Но в присутствии лактозы репрессор отсоединяется от ДНК и начинается синтез транскрипта РНК и фермента (рис. 3.3).

Рис. 3.3. Роль переключателя в синтезе β-галактозидазы и метаболизме лактозы в клетках Е. coli. Когда лактозы нет, белок lac-penpeccop связывается с переключателем и подавляет транскрипцию. В присутствии лактозы репрессор отсоединяется от ДНК, начинаются транскрипция и трансляция и образуется фермент. Рисунок Джоша Клейса.

Контроль синтеза фермента с помощью lac-репрессора — классический пример логики регуляции работы гена: ген используется лишь тогда, когда это необходимо. Всего в клетках E. coli 4288 генов, но в каждый конкретный момент времени работает лишь часть из них. У человека более 25 000 генов, но в каждом конкретном типе тканей или органов используется лишь часть из них. Можно назвать две основные закономерности работы генов у бактерий, и мы еще неоднократно обратим на них внимание.

1 Регуляция работы гена осуществляется с помощью присоединения / отсоединения ДНК-связывающего белка к / от ДНК.

2 ДНК-связывающий белок узнает специфическую последовательность ДНК вблизи последовательности гена.

Невозможно переоценить значение открытия генетических переключателей в клетках бактерий. Жакоб и Моно не просто открыли элегантный механизм контроля клеточной физиологии. Это открытие позволило разгадать тайну клеточной дифференцировки в более сложных организмах, включая нас с вами. Ученые поняли, что функции клеток крови, головного мозга, мышц и т.д. определяются синтезом специфических для конкретной ткани белков. Открытие индукции ферментов в бактериях проложило путь к пониманию функции специализированных клеток в органах и тканях животных. Но Жакоб и Моно были не только талантливыми генетиками. Они прекрасно писали, и их научные статьи, опубликованные в начале 1960-х гг., относятся к числу самых красивых, четких и убедительных трудов во всей биологической литературе. Они писали и книги. Книга Моно "Случайность и необходимость" (Hasard et la Necessite) так же хорошо известна в литературных и философских кругах, как и в среде биологов. Жакоб тоже написал несколько классических книг, включая замечательную автобиографию.