Постулирующие не обязательно авторитарны, они могли бы быть "либералами" и заявлять, что для них главное "аксиоматизация" любой непротиворечивой совокупности предложений, истинных или ложных. Эта игра не имеет ничего общего с истиной и передачей истины. Рассел никогда даже не рассматривал эту возможность. Отвергая постулирование, расшатывающее его евклидианские надежды, он в отчаянии ставил на индукцию, которая, как он надеялся, изгонит призрак погрешимости знания сначала из математики, потом из естественных наук: "Я не вижу какого-либо иного пути, нежели догматическое допущение, что мы знаем этот принцип индукции или его некоторый эквивалент; единственная альтернатива ― выбросить почти все, что почитается наукой и здравым смыслом как знание" (Russell, 1944, р. 683). Он никогда не рассматривал возможности того, что математика может быть предположительной, не допуская, что предположительность не ведет с необходимостью к полной сдаче разума.
Лишь исторически интересны небольшие детали того "отступления от пифагореизма" (Russell, 1959, chap. XVII), которое совершил Рассел. "Превосходная достоверность, которую я всегда хотел найти в математике, ― писал он, ― была утрачена в тупиковой путанице" (ibid, р. 212). Он был вынужден сдать евклидианизм, который покоился бы на "мысли, освобожденной от чувства… Надежда найти совершенство, окончательность и достоверность, ― писал он, ― была утрачена" (ibid). Фактически он так и не освободился от того замешательства, в которое его привела неподатливость математики. В работе (Russell, 1912; Рассел, 1914) он колебался, излагая свое воззрение на математику. Совершив удивляющий, но понятный разворот на 180°(volte-face), он отдал предпочтение Канту, который в конце концов был его союзником в решении огромной задачи обосновать науку и победить скептицизм (Russell, 1959, р. 82-84, 87, 109). Он написал осторожное предисловие к своей книге (Russell, 1919), сокрушаясь, что это книга, собственно, по философии математики, где "относительная достоверность еще не достигнута". "Далеко идущие усилия были приложены, чтобы избежать догматизма в таких вопросах, которые ещё открыты для серьезного сомнения". В его книге (Russell, 1948; Рассел, 1957) математическое знание, на которое он раньше полагался как на парадигму человеческого знания, не обсуждается вообще. "Парадокс Рассела" заставил Фреге немедленно сдать философию математики.*[24] Рассел упорствовал некоторое время, но затем последовал за ним.
Проследим теперь те заключения, которые Рассел отказывался проследить. Бесконечный регресс в доказательствах и определениях не может быть остановлен евклидианской логикой. Логика может объяснить математику, но не доказать ее. Она ведет к утонченной спекуляции, какой угодно спекуляции, кроме тривиально истинной. Область тривиальности ограничивается неинтересным разрешимым фрагментом из арифметики и логики, но даже этот тривиальный фрагмент временами расползается под ударами детривиализующей скептической критики.
Логическая теория математики такая же увлекательная, изощренная спекуляция, как и любая научная теория. Это эмпирицистская теория, и, следовательно, если не показана её ложность, она остается навеки предположительной.
Догматики, презирающие предположения, могут выбирать между надеждами на крайнюю тривиализацию и надеждами оправдать индукцию. Скептики отметят, что, устанавливая эмпирицистский характер расселовской теории, мы лишь демонстрируем, что она не содержит какого-либо знания, что она ― только софизм и иллюзия. Чистый скептик редок, и мы замечаем, что пессимистический догматик в конце концов тоже скептик. Эти пессимистические догматики требовали, чтобы мы бросили спекуляции и ограничили наше внимание некоторой узкой областью, которую они элегантно, но без каких-либо реальных оснований удостоверяют спасенной. В новейшей философии математики скептическим догматизмом был отмечен интуитивизм, охарактеризованный Гильбертом как "предательство нашей науки". Вейль аттестует работу Рассела в терминах, близких к тем, которыми оперировал кардинал Беллармино, называя теорию Галилея просто "математической гипотезой". Согласно Вейлю, Principia основывают математику «не на логике, но на своего рода логическом рае, вселенной довольно-таки сложной структуры, снабженной всей "необходимой обстановкой"… Побуждения очевидны, но вера в этот трансцендентальный мир ничуть не меньшее испытание для нас, чем вера в доктрины первых отцов церкви или средневековых философов-схоластов» (Weyl, 1949, р. 233; Вейль, 1984, с. 332). Интуиционисты, разумеется, правы, называя расселовскую логику контринтуитивной и погрешимой. Но несмотря на все это, она могла бы быть все же истинной.