Выбрать главу

Открытие Гёделем ω-противоречивых систем сделало положение еще хуже. Оказалось, что "непротиворечивость системы не исключает возможности структурной ложности". Формализованная арифметика может быть непротиворечивой, т.е. иметь модели, но ни одна из этих моделей не будет подразумеваемой моделью, каждая модель, коль скоро она содержит все числа, может содержать другие чужеродные элементы, которые способны обеспечить контрпримеры высказываниям, истинным в узкой области подразумеваемой интерпретации. В непротиворечивой, но ω-противоречивой системе мы могли бы доказать отрицание предположения Гольдбаха, даже если это предположение является истинным. В формализации, дающей сбой такого извращенного рода, истина и доказуемость раздельны. Если противоречивая система арифметики или логики не имеет модели, т.е. близка к тому, чтобы быть ничем, то ω-противоречивая система арифметики или логики не имеет подразумеваемой модели, т.е. даже близко не подходит к арифметике или логике.

Открытие ω-противоречивости и связанных с ней явлений положило конец гильбертовской формализации, центральной идеей которой была та, что формализация "устраняет всякую неопределенность в отношении того, что такое предложение теории или что такое доказательство в ней… Формализация теории имеет целью дать явное определение понятия доказательства. После того как это сделано, нет надобности обращаться каждый раз прямо к интуиции" (Kleene, 1952, р. 63, 86; Клини, 1957, с. 62, 81). То, что это предположение было опровергнуто, выражают обычно эвфемизмом: "синтаксическое понятие доказательства уступило дорогу семантической идее доказательства", эвфемизмом, прячущим поражение главной догматической идеи ― спасти математику от скептицизма.

Таким образом, гильбертовская программа тривиализации на метауровне коллапсировала. Но вскоре началась мощная кампания, направленная на заполнение пробелов. Генцен внес вклад в это заполнение пробелов, предложив свое остроумное доказательство непротиворечивости, за что и бились гильбертианцы, доказательство, находящееся в согласии с минимальными стандартами гёделевской утонченности и еще не переступившие границ тривиальности.*[27] Некоторые результаты Тарского обозначили путь, позволявший заполнить пробелы в проблематике полноты теории (Tarski, 1956, р. 276-277):

"Определение истины и, более широко, установление семантики позволяет нам блокировать некоторые негативные результаты, которые были получены в методологии дедуктивных наук, параллельными позитивными результатами и таким образом заполнить до некоторой степени [курсив мой ― И.Л.] пробелы, обнаруженные в дедуктивном методе и в конструкции самого дедуктивного знания".

К сожалению, некоторые логики склонны игнорировать эту осторожную квалификацию Тарского. В недавно изданном учебнике мы читаем, что гёделевский "негативный" (sic) результат был блокирован позитивным результатом Тарского (Stegmüller, 1957, S. 253). Автор прав, оставив слово "позитивный" без кавычек, в которые заключил бы его скептик, но зачем слово "негативный" заключать в кавычки?

Итак, резиновый евклидианизм вышел снова на авансцену, вышел в наше время, обнаруживая себя в качестве новой партийной линии постгильбертианцев. Забавно, какой утонченной может быть тривиальность. Самоочевидность, коль скоро она принята, оказывается, разумеется, растяжимой, и проверить высказывание на самоочевидную истину то же самое, что проверить его на истину ― показать, что оно внутренне противоречиво или ложно. Если мы отказываемся растягивать интуицию до бесконечности, нам придется признать, что метаматематика не останавливает бесконечный регресс в доказательстве, который возникает теперь в виде бесконечной иерархии все более богатых метатеорий (первая теорема Гёделя представляет собой по своей сути принцип сохранения утонченности или принцип сохранения погрешимости). Но это не обязывает нас впадать в математический скептицизм: мы только признаем погрешимость смелых спекуляций. Доказательство непротиворечивости Генценом, как и семантические результаты Тарского, действительные, а не пирровы (как называл их Вейль) (Weyl, 1949, р. 222) победы, они являются таковыми, даже если принимается не только "существенно более низкий стандарт очевидности" (ibid), но и определенно предположительный характер новых методов. Поскольку метаматематика растет, ее утонченная тривиальность становится все более утонченной и менее тривиальной. Тривиальность и достоверность суть Kinderkrankheiten*[28] знания.

вернуться

27

*Касаясь первоначальной программы Гильберта, С. Клини пишет: "В метатеории мы будем применять только те методы, которые формалисты называют финитными и которые используют только интуитивно представляемые предметы и осуществимые процессы" (Клини, 1957, с. 61). Касаясь генценовского доказательства непротиворечивости, Клини отмечает: "В первоначальных предложениях формалистов ― спасти классическую математику посредством доказательства непротиворечивости… ― не предусматривалось, что придется пользоваться таким методом, как трансфинитная индукция до ε0. В какой мере генценовское доказательство может быть воспринято как спасение классической арифметики в смысле этой постановки проблемы, это при современном положении вещей зависит от индивидуального мнения, а именно, от готовности рассматривать индукцию до ε0 как финитный метод" (там же, с. 423).

вернуться

28

*Детские болезни, (нем.).