И, следовательно (ibid, р. 71):
"…на этого рода скептицизм, отрицающий стремление к идеалу, так как дорога трудна и цель недостижима с определенностью, математика в пределах ее собственной области дает окончательный ответ. Слишком часто говорят, что нет абсолютной истины, но только мнение и частное суждение; что каждый из нас в своем взгляде на мир ограничен своими собственными особенностями, своими собственными вкусами и склонностями; что вне нас отсутствует царство истины, в которое мы терпением и дисциплиной можем во всяком случае получить доступ, но существует только истина для меня, для вас, для всякого отдельного лица. Эта привычка ума ведет к тому, что игнорируется одна из ведущих целей человеческих усилий, и из нашего морального видения исчезает высшее достоинство искреннего бесстрашного познания того, что есть. Математика стоит вечным препятствием на пути такого скептицизма, ибо ее сооружение из истин непоколебимо и неприступно для всех орудий сомневающегося цинизма".
Мы все знаем, как краткий евклидианский "медовый месяц" уступил место "интеллектуальной скорби" (Russell, 1959, р. 73), как намеченная логическая тривиализация математики выродилась в утонченную систему, включающую такие "аксиомы", как аксиомы редуцируемости, бесконечности, выбора, а также разветвленную теорию типов*[21] ― один из наиболее сложных лабиринтов, сфабрикованных человеческим умом. "Класс" и "отношение членства" (membership relation) оказались невразумительными, неопределенными, словом, любыми, только не "совершенно общеизвестными". Возникла совсем неевклидианская потребность доказательства внутренней непротиворечивости, дабы удостовериться, что "тривиально истинные аксиомы" не противоречат друг другу. Все это и то, что последовало за этим, поразило бы любого студента XVII в., как dèjà vu*[22]: доказательство уступило дорогу объяснению, совершенно известные понятия ― теоретическим понятиям, тривиальность ― утонченным рассуждениям, непогрешимость ― погрешимости, евклидианская теория ― эмпирицистской теории. И мы сталкиваемся с тем же отказом принять драматическое изменение: те же самые арьергардные вылазки, надежды и ersatz-решения.
Расселовская первая реакция на свои непреднамеренные, нежелаемые контртривиальные Principia шла по той же схеме, что и классические попытки XVII в. спасти догматизм. Я упомянул две из них: 1) держаться первоначальной евклидианской программы и либо пробиться сквозь строй гипотез к первым принципам, либо напрячь интуицию и обратить парадоксальные спекуляции вчерашнего дня в сегодняшнюю очевидность или, если это не поможет, 2) попытаться путем оправдания индукции направить истину снизу наполнять всю систему.
1) Подобно тому, как Ньютон надеялся объяснить закон всемирного тяготения принципом картезианской толчковой механики, Рассел надеялся на тривиализацию аксиомы редуцируемости. "Хотя кажется весьма невероятным, ― писал он, ― что эта аксиома оказалась бы ложной, ни в коей мере не невероятно, что будет обнаружено, что она дедуцируема из других более фундаментальных и более очевидных аксиом" (Russell, Whitehead, 1925, р. 59-60). Позже он отказался от этой надежды: "С чисто логической точки зрения, я не вижу каких-либо причин верить, что аксиома редуцируемости логически необходима… Включение этой аксиомы в систему логики есть, следовательно, дефект, даже если аксиома эмпирически истинна" (Russell, 1919, р. 193).
Рассел описал эту стандартную схему рассуждений в отношении аксиомы о параллельных (Russell, 1903, § 353):
"С кантианской точки зрения было необходимо поддерживать, что все аксиомы самоочевидны ― точка зрения, которую честным людям трудно было распространить на аксиому о параллельных. Отсюда возникал поиск более правдоподобных (plausible) аксиом, которые могли бы быть объявлены истинами а priori. Но хотя много таких аксиом было предложено, все они по здравому разумению могли бы быть поставлены под сомнение, и этот поиск вел только к скептицизму."
Согласился ли бы он с тем, что его поиск "правдоподобных" логических аксиом, "которые могли бы быть объявлены истинами а priori", вел только к скептицизму?
21
*Теория типов была реакцией на парадокс теории множеств, открытый Б. Расселом (парадокс Рассела). Этот парадокс возникает, когда ставится вопрос о множествах всех множеств, не являющихся собственными элементами (обозначим такие множества S). Логичный ответ на этот вопрос приводит к тому, что S есть элемент S в том и только в том случае, когда S не есть элемент S.
Обычно парадокс Рассела поясняют, ставя вопрос: "Бреет ли себя деревенский брадобрей, который бреет всех тех жителей данной деревни, которые не бреются сами?"
*"Суть теории типов (или теории логических ступеней) состоит в том, что все математические высказывания делятся на классы в соответствии с областью определения. Пусть имеется некоторая область объектов: a, b, c и т.д. К первому типу относятся высказывания о свойствах этих объектов: f(a), g(b) и т.д. Ко второму типу относятся высказывания о свойствах этих свойств, которые могут быть выражены логическими функциями F(f), F(g) и т.д. К третьему типу ― высказывания о свойствах свойств свойств… Основное правило теории типов состоит в том, что каждый предикат относится только к определенному типу и может быть применен только к объектам нижележащего типа, он не может быть применен к предикатам более высокого уровня или к самому себе как объекту" (Беляев Е.А., Перминов В. Я. Философские и методологические проблемы математики. М.: МГУ, 1981. с. 75).