Работа Ландау, Абрикосова и Халатникова. Сразу после зачисления в ИТЭФ (1950 г.) я стал изучать теорию перенормировок, фейнмановскую технику. А. Д. Галанин пытался вычислять радиационные поправки в квантовой электродинамике (КЭД) ещё в старой технике. Он переключился на новую фейнмановскую технику и был для меня как бы старшим товарищем. Мы научились вычислять радиационные поправки в КЭД и мезонной теории, проводить перенормировку — сначала в низшем порядке теории возмущений, а затем и в более высоких. Мне удалось построить точную систему зацепляющихся уравнений для функции Грина мезонной теории. Затем в совместной работе А. Д. Галанина, И. Я. Померанчука и моей была проведена перенормировка массы и заряда в такой системе. Мы показали, что решения такой системы связанных уравнений не должны содержать бесконечностей — они должны быть конечными. Однако, при попытке обрыва этой бесконечной системы на каком-либо конечном члене, бесконечности появлялись опять: для того, чтобы избавиться от них, нужно было просуммировать весь бесконечный ряд. Так что эта попытка не привела к успеху, хотя мы многому научились.
Вычисляя первые порядки теории возмущений, мы с Галаниным увидели, что в поляризационных операторах и вершинных функциях при больших виртуальностях р2 возникают ln(р2/m2), причём в 1-м порядке появляется ln(р2/m2), во 2-м есть члены, пропорциональные ln2(р2/m2), в третьем — ln3(р2/m2) и т.д. Очень поучительной оказалась для нас статья Эдвардса (S.F.Edwards. Phys. Rev. 90, 284 (1953)). Эдвардс построил уравнение для вершинной функции в лестничном приближении и установил, то в n-порядке теории возмущений возникают члены (e2ln р2/m2)n.
В 50-е годы Ландау приезжал в ТТЛ (ИТЭФ) каждую среду. Он участвовал — и очень активно — в проходивших по средам экспериментальных семинарах, которыми руководил Алиханов. После семинара Ландау приходил в комнату теоретиков, где тогда сидели Галанин, Рудик и я. Сюда же собирались все остальные теоретики, и начинались обсуждения, продолжавшиеся часа два.
На одном таком обсуждении Померанчук, Галанин и я объяснили Ландау ситуацию с радиационными поправками в квантовой электродинамике. Из этих разговоров у Ландау возникла идея суммирования старших логарифмических членов, т. е. членов (e2ln p2)n в КЭД. Именно за это Померанчуку, Галанину и мне была выражена благодарность в первой работе Ландау, Абрикосова и Халатникова. (Ландау был скуп на благодарности и выражал их только тем, кто действительно внёс что-то существенное в его работу.)
Первоначально, когда Ландау формулировал идею, у него было представление, что в результате суммирования старших логарифмов в КЭД возникает то, что сейчас называется асимптотической свободой — взаимодействие станет убывать с ростом p2. Такие ожидания сформулированы в первой из серии работ Ландау, Абрикосова и Халатникова, которая была отправлена в печать ещё до того, как был получен окончательный результат. Приезжая в ТТЛ по средам, Ландау рассказывал, как идут вычисления. Основные идеи (поворот контура интегрирования, введение обрезания, выбор калибровки и т.д.) принадлежали Ландау, но технически все вычисления делали Абрикосов и Халатников — сам Ландау фейнмановской техникой владел плохо. Полученный ими результат подтвердил ожидания — эффективный заряд в КЭД убывал с ростом энергии.
Галанин и я решили повторить эти вычисления. Нам хотелось провести ту же идею в нашей системе перенормированных уравнений. (В дальнейшем вместе с Померанчуком мы это сделали.) Однако, уже вычисление первой петли привело к противоположному результату: эффективный заряд не убывал, а рос с ростом энергии! В ближайшую среду мы рассказали это Ландау и убедили его в своей правоте. В последней из серии работ Ландау, Абрикосова и Халатникова, которую авторы уже собирались отправить в печать, была ошибка в знаке, кардинально меняющая все выводы — вместо асимптотической свободы появился нуль заряда. Как впоследствии рассказывал С. С. Герштейн (который тогда работал в Институте Физических Проблем), вернувшись после этого семинара из ТТЛ, Ландау сказал: «Галанин и Иоффе спасли меня от позора».