Так случилось и в этот раз.
Действительность многогранна, и опыт, только что истолкованный в духе протонно-электронной модели, обнаружил новые черты элементарных частиц. Выяснилось, что протоны и электроны представляют собой миниатюрные магнитики, причем легкие электроны обладают примерно в две тысячи раз большим магнетизмом, чем тяжелые протоны.
Здесь не было ничего удивительного. Просто новый, хотя еще и не объясненный факт. Но опыт показал также, что магнитные свойства всех ядер по величине близки к магнетизму протона! Как же слабенькие магнитики-протоны уничтожали в ядре «огромный» магнит электрона? Ведь уже в тяжелом водороде — дейтерии в соответствии с моделью должны быть два протона и один электрон. Но магнетизм его не только не равен магнетизму электрона, но в три раза меньше, чем магнетизм протона. А это примерно в 5 тысяч раз меньше, чем можно ожидать от протонно-электронной модели.
Вмешался опыт и в выводы квантовой статистики. Эта статистика предопределяла свойства ядер на основе простого подсчета числа содержащихся в них протонов и электронов. Ядра с четным числом частиц должны всегда отличаться от ядер с нечетным числом частиц.
Но опыт в ряде случаев отвергал эти предсказания.
Трудно было понять и то, как электрон, дебройлевская волна которого значительно больше размеров ядра, помещался внутри него. Не вязались между собой и некоторые другие опытные факты. Итак, опыт, накопившийся к 1932 году, объявил протонно-электронную модель ядер, утвердившуюся даже в учебниках, незаконной.
Казалось, микромир заманил ученых в глухой тупик.
Правильный путь обнаружился совершенно неожиданно. Как говорят, не было бы счастья, да несчастье помогло. В 1932 году Чедвик, один из учеников Резерфорда, открыл новую частицу. Это разрушило до основания стройное здание микромира, покоившееся на трех микрокитах — протоне, электроне и фотоне. Четвертому киту не оказалось места. И он не только разрушил фундамент, казавшийся незыблемым, но и посеял сомнение в том, является ли открытие навой частицы последним.
Разрушение может стать началом созидания. Скоро выяснилось, что вновь открытая частица — нейтрон, названная так вследствие того, что она была электрически нейтральной, по массе очень близок к протону и обладает магнетизмом.
Этого было достаточно, чтобы предложить новую модель ядер. Иваненко в СССР и Гейзенберг в Германии предположили, что ядра состоят только из протонов и нейтронов. Ядро водорода содержит 1 протон (имеет заряд, равный единице, и атомный вес, равный единице). Следующее по сложности ядро тяжелый водород — дейтерий. Оно содержит 1 протон и 1 нейтрон (заряд — 1, вес — 2). Следующий — сверхтяжелый водород — тритий. Его состав — 1 протон и 2 нейтрона, затем гелий — 2 протона и 2 нейтрона (заряд — 2 и вес — 4). Существует и «легкий гелий» — гелий-3. Его атомный вес равен 3, заряд 2, в его ядре 2 протона и всего 1 нейтрон. Дальше все шло как по нотам, в полном согласии с таблицей Менделеева.
Новая модель легко отвечала на вопросы, оказавшиеся роковыми для старой. Магнитные свойства всех ядер в соответствии с опытом оказывались близкими к магнитным свойствам протонов и нейтронов. Отпали и возражения квантовой статистики. Например, азот, который по старой модели «был» нечетным (14 протонов и 7 электронов), в новой модели «стал» четным (7 протонов и 7 нейтронов), как и должно быть в соответствии с опытом. Стало ненужным придумывать специальные гипотезы, чтобы «втиснуть» дебройлевские волны электрона в ничтожный объем ядра.
Но не все было благополучно в протонно-нейтронной модели. Изгнание электрона из ядра лишило его «электронного цемента», ранее связывавшего положительные заряды протонов. Что же теперь удерживает их в ядре вместе с нейтральными нейтронами, несмотря на взаимное отталкивание одноименных зарядов?
Были и другие подводные камни, например бета-распад. С бета-распадом все давно было ясно. Нейтрино придало теории бета-распада характер полной достоверности. Но теперь бета-распад мог оказаться роковым для протонно-нейтронной модели ядра. Многолетний опыт показывал, что при распаде многих ядер из них вылетают электроны. Спрашивается, как может вылететь из ядра то, чего там нет?
Гейзенберг, спасая бета-распад и протонно-электронную модель ядра, отвел последнее возражение новой гипотезой. Он предположил, что нейтрон в радиоактивных ядрах может превращаться в протон, электрон и нейтрино. Протон при этом остается в ядре, электрон и нейтрино вылетают, как и положено во время бета-распада.