Выбрать главу

Это была своего рода оборона против активно наступавшей копенгагенской интерпретации. Контратаковать ее пытался лишь де Бройль. Вернувшись из Брюсселя в Париж, он в спокойной обстановке восстановил ход дискуссии на конгрессе и окончательно признал, что возражения против теории волны-лоцмана неопровержимы. Ведь волна, рассматриваемая как носитель вероятности, действительно могла определить лишь вероятное положение траектории, а не истинный путь частицы, если даже такой существует. А в том, что траектория, как истинный путь частицы, существует, де Бройль не сомневался. Более того, он был убежден, что теория двойного решения может его указать. Но, пишет он, обескураженный математическими трудностями, «я полностью отказался от попыток детерминистического истолкования волновой механики и полностью присоединился к концепциям Бора и Гейзенберга».

Бессилие заставило де Бройля признать точку зрения, в которую он не верил.

Систематически боролись с копенгагенской интерпретацией советские физики А. Д. Александров, Д. И. Блохинцев, В. А. Фок и многие другие. Они указывали на пороки этой интерпретации. Но и они больше преуспели в решении актуальных физических и технических задач, чем в глубоком обосновании квантовой теории. Им тоже не удалось пока создать замкнутой теории с соответствующим математическим аппаратом, удовлетворяющей всем сформулированным ими требованиям.

Продолжение следует

Дальнейшее развитие квантовой физики, ее поразительные успехи в теории атомов и молекул и многое другое, о чем будет рассказано в этой книге, проходило на фоне вероятностной интерпретации.

Многих она не удовлетворяла, но ничего лучшего не существовало, а она помогала решать все более сложные задачи, вела физиков все глубже в тайны микромира. Проблема элементарных частиц вновь и вновь со всей остротой ставила вопрос о структуре квантовой физики.

Все больше и больше данных свидетельствует о том, что разобраться в строении элементарных частиц при помощи существующих теорий невозможно. Нужна новая революция. Необходимо идейное перевооружение.

Работа над созданием новой теории микромира активно ведется в СССР, США, Англии, Франции, Японии и других странах, но огромные математические трудности не позволяют утверждать, что она скоро кончится успехом.

Возможно, что наряду с двумя основными постоянными — скоростью света и постоянной Планка — придется ввести третью постоянную, например элементарную длину, величину, близкую к диаметру атомного ядра.

Может быть, новая теория должна быть построена на какой-нибудь более радикальной идее, которая пока еще не родилась. Несомненно, ученым предстоит еще много раз находить и ошибаться. Развитие науки беспредельно, но легких путей в ней нет. Здесь уместно сказать словами де Бройля: каждый успех наших знаний ставит больше проблем, чем решает. И в этой области каждая новая открытая земля позволяет предполагать существование еще неизвестных нам необъятных континентов.

* * *

Итак, на рубеже нашего века на базе классической физики родилась новая физика. Это отнюдь не значило, что все ранее сделанное учеными отвергалось и заменялось иными взглядами, иными толкованиями. Так думать было бы большой ошибкой! Действительно, классическая физика, открывшая людям глаза на многие явления природы, ответившая на массу вопросов, стала в тупик перед миром больших скоростей и миром ничтожно малых частичек материи. На этой почве и возникли теория относительности и квантовая механика.

Но это вовсе не значит, что все сделанное предшествующими учеными перечеркивалось. Почти в каждой теории есть рациональное зерно, и она решает какую-то часть проблемы. Это решение и входит в основу более совершенной теории. Да, классическая физика не могла справиться с нагретым телом. Планк, введя в классическую термодинамику понятие дискретности, построил более полную теорию излучения, и призрак ультрафиолетовой смерти рассеялся сам собой. Да, классическая физика не могла объяснить явление фотоэффекта. Эйнштейн, разгадав прерывистую сущность света, объяснил его.

Конечно, квантовая теория не всесильна. Объяснив процесс излучения нагретого тела и фотоэффект, она тем не менее до сих пор не может справиться со многими загадками микромира. Но Эйнштейн считал это не трагичным, а вполне естественным, отражающим двойственный характер природы материи. Вот почему волновая теория света Гюйгенса, хоть она и опиралась на ложное подобие световых волн со звуковыми, не была полностью ошибочной. Заблуждения Гюйгенса заставили Френеля искать выход из положения, и он нашел его в эфире, поперечными колебаниями которого считал свет. А так как свет — это действительно (в одной из своих сущностей) волна, то формулы Гюйгенса и Френеля верны и сегодня.