Гипотезой Фицджеральда заинтересовался Лорентц.
Опыт Майкельсона грозил опрокинуть электромагнитную теорию Максвелла, которая исходила из идеи неподвижного эфира. С юных лет питая слабость к этой теории, Лорентц ломал себе голову над целой серией моделей сокращения размеров планет, плавающих в океане эфира, — только бы формулы Максвелла не пострадали! Опыт Майкельсона ниспровергал не только теорию Максвелла, но и задевал вытекающую из нее и являющуюся ее развитием электронную теорию самого Лорентца.
Электронная теория Лорентца вопреки убеждению ее творца, так же как и теория Максвелла, не нуждалась в механическом эфире, но понятие эфира в ней сохранялось, трансформировалось в синоним абсолютного безграничного пространства, введенного в науку еще Ньютоном. Поэтому из теории Лорентца также вытекала возможность обнаружения движения тел в неподвижном пространстве — эфире.
Естественно, Лорентц должен был найти защиту своей теории от сокрушающего «нет» опыта Майкельсона. С этой целью он и обратился к гипотезе Фицджеральда.
В изящной, но чрезвычайно искусственной гипотезе Фицджеральда Лорентц увидел подтверждение существования эфира. Ведь это был первый случай, когда эфир действовал на осязаемые тела. Правда, действие это приводило к тому, что обнаружить движение тела сквозь эфир было невозможно. Но что из этого! Эфир действовал на все тела и действовал одинаково, независимо от их индивидуальных свойств; действовал универсальным образом, как и надлежало столь всепроникающей, необычайной субстанции.
Внимательно анализируя гипотезу Фицджеральда, Лорентц воплотил ее в строгие математические формулы, из которых оказывалось, что в движущихся телах необходимо наряду с сокращением размеров ввести особое время, зависящее от их скорости.
Этот результат был столь необычным и неожиданным, что Лорентц счел его просто математическим приемом, ничуть не посягающим на абсолютное время, введенное в науку Ньютоном вместе с понятием абсолютного пространства.
Так, находясь в плену старых традиций, Лорентц не понял открывшихся перед ним возможностей, выявленных его формулами, и истолковал их в духе классических представлений Ньютона и мирового эфира.
Лорентц не оказался способным на революцию. Но он был честным человеком. Несмотря на то, что он был близок к чуду, к откровению, которое озарило впоследствии Эйнштейна, он никогда не претендовал на пальму первенства в этом вопросе. Он всегда признавал, что не понял того, что понял Эйнштейн, и горячо пропагандировал его теорию.
Рассказывают, что один молодой человек, мечтавший заниматься теоретической физикой, поведал о своей мечте Томсону. И тот отговаривал молодого физика, потому что теоретическая физика, по существу, закончена, что в ней нечего делать. Правда, есть два облачка, добавил он, это неясность с постоянной Планка и с опытом Майкельсона.
Это был канун переворота в физике, канун революции.
Революцию эту произвел гений Эйнштейна.
Глубоко проанализировав всю сумму опытных данных, накопленных физиками более чем за двадцать веков, скромный двадцатипятилетний чиновник патентного бюро в Берне — Эйнштейн, опубликовавший, правда, статью о теории броуновского движения и не понятую никем гипотезу световых квантов, принял в качестве основного закона, что скорость света неизменна при всех условиях.
При таком предположении отрицательный результат опыта Майкельсона был неизбежным: ведь это предположение само было следствием отрицательного результата опыта.
Эйнштейн понял также, что любые явления и процессы происходят совершенно одинаково во всех телах, движущихся по инерции. Этим он распространил на всю физику принцип относительности Галилея, имевший до этого силу только для механики; принцип, который заставляет пассажира, сидящего в вагоне, думать, что его поезд пошел, хотя двинулся только состав, до этого стоявший на соседнем пути.
Сделав два предположения — о постоянстве скорости света и об универсальности принципа относительности, — Эйнштейн не только объяснил загадку опыта Майкельсона, но и открыл новую эру в физике. Из этих предположений родилась теория относительности, вначале ее простейшая часть — специальная теория относительности, объяснявшая опыты, проводимые в лабораториях, движущихся по инерции, а затем и общая, охватывающая также ускоренные движения и силы тяготения.
Но эта теория привела к выводам, показавшимся современникам безумными, — размеры тел, их масса, само течение времени потеряли свой абсолютный характер.