В этих случаях также изменяется соотношение изоформ белков, что отражается в изменении, например, спектра гемоглобинов и спектра изоферментов. Изменяется и антигенная характеристика белков. Важно, что имеются общие особенности всех указанных изменений.
1. Эти изменения приводят к качественному подобию спектров изоформ белка нормальной ткани в состоянии активной пролиферации и нормальной регенерирующей ткани к спектрам изоформ белка эмбриональной и активно растущей злокачественной ткани. Такое же подобие наблюдается и по спектру антигенов.
2. Указанные изменения в нормальной ткани возникают вслед за стимуляцией пролиферативной активности и исчезают, как только пролиферативная активность нормализуется. Это не зависит от типа ткани.
3. Указанные изменения происходят и при воздействиях физических факторов на организм человека и животных, но только в тех случаях и в то время, когда происходит усиление пролиферативной активности ткани. Новые белки в этом случае, как правило, не появляются, но может происходить их модификация.
Следовательно, во всех указанных случаях можно говорить прежде всего о генетической регуляции, о процессах репрессии — дерепрессии определенных локусов генома в зависимости от состояния клетки, об однотипности и неспецифичности процессов генной регуляции для разных тканей организма и при воздействии разных факторов, вызывающих состояние активной пролиферации ткани. Указанные изменения не требуют возникновения мутации, т. е. изменений в структурных генах. Необходимые процессы генной регуляции синтеза белка описаны достаточно подробно во многих руководствах, и на них мы останавливаться не будем.
Однако механизмы возможной связи между изменением пролиферативной активности и изменением изоформ белков не ясны. В связи с изложенным следует рассмотреть ошибки рибосомального синтеза, не связанные и связанные с генетической регуляцией. Особое внимание было обращено на тот факт, что закономерные ошибки рибосомального синтеза белка обнаруживаются и в опытах in vitro в бесклеточной среде при отсутствии генной регуляции.
Наиболее распространенное мнение о механизме работы рибосомы предполагает, что рибосома, состоящая из двух неравных субчастиц, ползет по матричной РНК от 5'-конца к 3'-концу, считывает информацию об аминокислотной последовательности и присоединяет соответствующие аминокислоты в полипептидную цепь. При этом малая субчастица рибосомы осуществляет контакт с мРНК. Полипептидная цепь собирается на особых центрах большой субчастицы. При этом механизм сборки полипептида, динамика процесса остаются неясными.
А. С. Спирин и Л. П. Гаврилова предложили свою схему строения рибосомы, которая лучше соответствует наблюдаемым фактам, вскрывает движущие силы и механизм работы рибосомы. В основу положено разделение функций между субчастицами: большой отведена роль полимерного носителя, удерживающего последовательно наращиваемый пептид, а малой субчастице — роль «подносчика» аминокислот. Обе субчастицы соединены подвижным шарниром и связаны с одной и той же матрицей. Выделен рабочий цикл рибосомы, состоящий из пяти «шагов». Сначала «подносчик» связывается с мРНК, отодвигается от носителя (рибосома открывается) и вылавливает из цитоплазмы аминоацилтранспортную РНК, соответствующую очередному кодону матрицы. Пока рибосома открыта, совершается перебор соответствия кодонов антикодонам и, следовательно, правильного выбора очередной аминокислоты. Когда аминокислота выбрана, рибосома закрывается и приводит аатРНК в контакт с наращиваемым полипептидом и очередная аминокислота (точнее, ее остаток) занимает свое место в цепи, а освобожденная тРНК уходит в цитоплазму и находит себе новую молекулу этой же аминокислоты. Периодическое размыкание и смыкание рибосомальных субчастиц является приводным механизмом, обеспечивающим все перемещения тРНК, мРНК и аминокислот в процессе синтеза пептидной цепи.
Каждому кодону мРНК соответствует антикодон на аатРНК. Каждый кодон состоит из триплета нуклеотидов (разные сочетания урацила, аденина, цитозина и гуанина). Каждая из 20 аминокислот имеет характерные только для нее кодоны (табл. 3). Например, тирозин кодируется следующими кодонами: УАУ (урацил—аденин—урацил) и УАЦ (урацил—аденин—цитозин). Метионин кодируется одним кодоном, в то время как ряд других аминокислот — большим числом, например шестью кодонами (лейцин, серин, аргинин). Для каждой аминокислоты все кодирующие ее кодоны равнозначны.
Рибосомальный синтез белка оказался чрезвычайно устойчивым к непосредственному действию радиации. Однако его интенсивность очень чувствительна к регуляторным влияниям организма.