Выбрать главу

Как будто все просто. Нужно только сблизить ядра легких элементов между собой и использовать выделяющуюся при этом колоссальную энергию. Но в этом-то и заключается основная, казавшаяся вначале ученым непреодолимой, трудность. Как сблизить ядра между собой? Ведь они все заряжены положительно и при сближении между ними действуют электрические силы отталкивания, т. е., как говорят физики, частицам нужно преодолеть кулоновский барьер. Чем сильнее сближаются ядра, тем больше сила отталкивания. Чтобы произошла реакция синтеза, нужно преодолеть эту силу отталкивания, вплотную сблизить ядра между собой. Но как это сделать?

Нужна спичка

Нетрудно догадаться, как сблизить ядра. Их нужно посильнее разогнать, чтобы летящие ядра преодолели силу электрического отталкивания и соприкоснулись друг с другом. Тогда и произойдет реакция. А как разогнать ядра? Есть несколько способов. Например, можно разогнать их под действием электрических и магнитных полей в специальных машинах, называемых ускорителями. Пучок летящих с огромной скоростью ядер легких элементов можно направить в мишень, также содержащую легкие ядра. Но термоядерная энергия, выделяющаяся при этом, будет ничтожной, во много раз меньше энергии, расходуемой на разгон ядер.

Для выделения заметной энергии нужно, чтобы термоядерная реакция происходила во всем объеме вещества. А как разогнать все ядра вещества до огромной скорости? Нетрудно догадаться — нагреванием. Ведь каждый школьник знает, что при нагревании тела скорость движения атомов (следовательно, и ядер) увеличивается. Значит, если нагреть вещество, состоящее из ядер легких элементов, до достаточно высокой температуры, то начнется термоядерная реакция. Энергии, выделяющейся при этой реакции, хватит и для поддержания реакции, и для полезного использования. А энергия выделится огромная. Если при делении одного грамма урана выделяется энергия, эквивалентная энергии, получаемой при сгорании двух с половиной тонн угля, то при синтезе одного грамма легких ядер выделится энергия, эквивалентная энергии уже десятков тонн каменного угля.

Итак, нужна только «спичка», которая должна вызвать «термоядерный пожар» в веществе.

>

Чудовищные требования

Обычная спичка, конечно, не подходит. Она дает температуру всего лишь в несколько сотен градусов. А нужны сотни миллионов градусов! Или, во всяком случае, десятки миллионов градусов, чтобы реакция пошла достаточно интенсивно. Все достигнутые в технике температуры очень малы. Они не превышают пяти-шести тысяч градусов. Даже при такой ничтожно низкой температуре по сравнению с той, которая необходима для термоядерной реакции, все вещества превращаются в пар. А ведь нужно удержать эту температуру в ограниченном объеме. Из какого же материала сделать стенки, ограничивающие объем? Кроме того, при таких температурах возникает чудовищное давление на стенки от летящих с огромной скоростью ядер. Это выдвигает еще одно, казалось бы непреодолимое, требование к материалу стенок — он должен иметь непомерную прочность.

Материалов, удовлетворяющих этим требованиям, нет и не может быть в природе. Это очевидно. Но выход все-таки есть.

Снова разряд

Нет пределов для ухищрений человеческого ума. И в 1950 г. двое советских ученых — академики Сахаров и Тамм — впервые предложили один из способов получения сверхвысоких температур в земных условиях.

Этот способ — использование газового разряда. Да, того самого разряда, который мы видим в многочисленных трубках реклам. Того самого, который позволил Вильгельму Рентгену начать очень важный этап в биографии атома, связанный с открытием икс-лучей, испускаемых разрядной трубкой.

Газовый разряд — очень интересное явление. Каждый день нам приходится иметь дело с тремя состояниями вещества: газообразным, жидким и твердым. А при газовом разряде мы сталкиваемся с плазмой,—четвертым

Плазма под действием электродинамических сил при пропускании через нее электрического тока сжимается в тонкий шнур, имеющий огромную температуру. В этом и заключалась идея Сахарова и Тамма.

состоянием вещества. В этом состоянии у атомов вещества оторваны электроны. Электроны и положительно заряженные атомы свободно плавают в плазме. Поэтому любое вещество в состоянии плазмы обладает очень хорошей электропроводностью. Теперь вспомним школьный опыт с параллельными проводниками, по которым в одну и туже сторону течет электрический ток. Известно, что такие проводники притягиваются один к другому под влиянием кругового магнитного поля, которое охватывает эти два проводника. А если вместо проводников будет плазма?