Выбрать главу

Гидрокарбонатные растворы, содержащие повышенное количество Са2+, Mg2+, Fe2+, Mn2+, мигрируют в сторону от водонефтяного контакта, где в водоносных горизонтах микробиологическая деятельность развивается слабее и pH выше. В результате происходит осаждение вторичных эпигенетических карбонатов, цементирующих пласт. Эти явления были описаны на нефтяных месторождениях Среднего Поволжья, Кубани, Средней Азии.

Новые интересные данные доставило изучение нефтегазоносных бассейнов Сибири. Б. А. Лебедев, А. А. Розин, З. Я. Сердюк и др. установили широкое распространение в Западной Сибири эпигенетической каолинизации и карбонатизации. Так, в Межовском районе в юрских отложениях на глубине 2500 м полевые шпаты, слюды, хлориты превращены в каолинит. Здесь же развиваются и вторичные карбонаты. Эпигенетические изменения носят «игольчатый» характер, часто они приурочены к зонам разломов. Аналогичные явления установлены в районе Шаима, Сургута, Чебачья, Мельджино. Изменения происходили в восстановительных условиях, так как среди вторичных карбонатов присутствует не только кальцит, но и сидерит, анкерит. Следовательно, железо мигрировало и среда была глеевой. Каолинизация возможна только в кислой среде, а осаждение карбонатов — в нейтральной и щелочной. Это однозначно решает вопрос о последовательности процессов — сперва кислая глеевая каолинизация, потом окарбоначивание каолинизированных горизонтов.

Р. В. Королева и Б. А. Лебедев описали подобную кислотно-щелочную зональность в триасовых песчаниках Лено-Вилюйской нефтеносной области. Так, на Средне-Вилюйском газовом месторождении в водоносных горизонтах на глубине 2,5—3,5 км в песчаниках наблюдается следующая эпигенетическая зональность:

Зона изменения Состав цементов
Выщелачивания (кислая) Каолинит с примесью хлорита
Отложения вторичных минералов (щелочная среда) Карбонаты, кварц, альбит, цеолиты, монтмориллонит, хлорит
Неизмененных пород Монтмориллонит, хлорит, гидрослюды, смешаннослойные минералы, каолинит

Как и в Западной Сибири, вторичные минералы представлены кальцитом, анкеритом и сидеритом, что указывает на глеевый характер вод. Эпигенетическая каолинизация в нефтеносных породах известна также в Предкавказье, Мангышлаке, Волго-Уральской области, Прибалханском районе, во многих районах США, Северной Африки. С этим процессом связано формирование коллекторов для нефти и газа, так как при каолинизации пористость песчаников увеличивается. В карбонатных породах коллекторы образуются за счет растворения CaCO3 под влиянием углекислых вод. Вторичные карбонаты откладываются по периферии коллекторов, т. е. и здесь имеет место щелочно-кислотная зональность.

Хотя причины кислотно-щелочной глеевой зональности в осадочных породах трактуются по-разному, в геохимическом аспекте главным виновником является один элемент — углерод, точнее, углекислый газ.

Одним из универсальных источников углекислого газа служит окисление микробами органических веществ битумного (нефтяного) или угольного ряда. Эти процессы протекают везде, где имеются вода и органическое вещество и температура не слишком высока. Естественно, что наиболее энергично они развиваются в местах скопления органического вещества, например на водонефтяных контактах.

Вторым источником углекислого газа служит разложение карбонатов. Термическая диссоциация CaCO3 требует многих сотен градусов и может развиваться лишь в зонах магматизма и метаморфизма. Такой метаморфогенный и магматогенный углекислый газ мог играть роль в рассматриваемых процессах, однако доказать его участие довольно трудно.

В процессах кислого глеевого выщелачивания и каолинизации, вероятно, определенную роль играют органические кислоты, весьма характерные для вод, связанных с нефтяными месторождениями.

Водоносные горизонты сероводородного (сульфидного), третьего ряда. Одним из источников сероводорода служит десульфуризация. Именно поэтому «нефтяные воды» часто являются бессульфатными. Однако биохимическое образование сероводорода за счет восстановления сульфатов характерно для более высоких горизонтов нефтяных и газовых месторождений. Вместе с тем содержание сероводорода в нефтяных газах во многих районах возрастает с глубиной, что указывает на другой источник его. Такой глубинный сероводород был обнаружен в больших количествах на многих газовых месторождениях. Он предъявляет большой интерес как серное сырье: в СССР — в Оренбургской области, в США (в Техасе некоторые газы содержат до 80—97% сероводорода), Канаде, Франции, ФРГ. Сероводород поступает с больших глубин, где господствует высокая температура и невозможна десульфуризация. Л. А. Анисимов предполагает, что этот газ образовался в результате термокаталитического разложения сернистых нефтей и других сероорганических соединений.