2. Белки, выполняющие разные функции, имеют разные последовательности.
3. Белки со схожими функциями имеют похожие последовательности, однако совпадение последовательности проявляется обычно лишь в малой степени.
4. Одинаковые белки, выполняющие одинаковые функции, но выделенные из разных организмов, обычно имеют значительное сходство в последовательности.
5. Одинаковые белки, выполняющие одинаковые функции и выделенные из организмов одного вида, почти всегда обладают совершенно одинаковой последовательностью.
Высшие уровни структуры белков, их биологическая активность тесно связаны и фактически определяются аминокислотной последовательностью. То есть, первичная структура генетически детерминирована и определяет индивидуальные свойства белков, их видовую специфичность, на ее основе формируются все последующие структуры.
Вторичная структура белка – конфигурация полипептидной цепи, образующаяся в результате взаимодействий между её функциональными группами.
Разновидности вторичной структуры:
1. α-спираль.
2. Складчатый лист (β-структура).
3. Статистический клубок.
Первые две разновидности представляют собой упорядоченное расположение, третья – неупорядоченное.
Сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой. Супервторичная структура формируется за счет межрадикальных взаимодействий.
Разновидности супервторичной структуры белков:
1. Супервторичная структура типа β-бочонка. Она действительно напоминает бочонок, где каждая β-структура расположена внутри и связана α-спиральным участком цепи, находящимся на поверхности. Характерна для некоторых ферментов – триозофосфатизомеразы, пируваткиназы.
2. Структурный мотив «α-спираль – поворот – α-спираль». Обнаружен во многих ДНК-связывающих белках.
3. Супервторичная структура в виде «цинкового пальца». Характерна также для ДНК-связывающих белков. «Цинковый палец» – фрагмент белка, содержащий около 20 аминокислот, в котором атом цинка связан с радикалами четырех аминокислот: обычно с двумя остатками цистеина и двумя – гистидина.
4. Супервторичная структура в виде «лейциновой застежки-молнии». Объединение протомеров или отдельных белков в комплексы иногда осуществляется с помощью структурных мотивов, называемых «лейциновая застежка-молния». Примером такого соединения белков могут служить гистоны. Это ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот – аргинина и лизина. Молекулы гистонов объединяются в комплексы с помощью «лейциновых застежек», несмотря на то, что все мономеры имеют сильный положительный заряд.
Содержание типов вторичных структур в разных белках неодинаково.
По наличию α-спиралей и β-структур глобулярные белки можно разделить на 4 категории:
1. К первой категории относятся белки, в структуре которых обнаружена только α-спираль. Это миоглобин, гемоглобин.
2. Ко второй категории относят белки с α-спиралями и β-структурами. Характерные сочетания α-спиралей и β-структур обнаружены во многих ферментах: лактатдегидрогеназа, фосфоглицераткиназа.
3. В третью категорию включены белки, имеющие только β-структуру. Сюда относятся: иммуноглобулины, фермент супероксиддисмутаза.
4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное количество регулярных вторичных структур.
Третичная структура белка – пространственная ориентация полипептидной цепи или способ ее укладки в определенном объеме.
В зависимости от формы третичной структуры различают глобулярные и фибриллярные белки. В глобулярных белках чаще преобладает α-спираль, фибриллярные белки образуются на основе β-структуры.
В стабилизации третичной структуры глобулярного белка могут принимать участие:
1. водородные связи спиральной структуры;
2. водородные связи β-структуры;
3. водородные связи между радикалами боковых цепей;
4. гидрофобные взаимодействия между неполярными группами;
5. электростатические взаимодействия между противоположно заряженными группами;