Выбрать главу

Е + S + I → ES + I → Е + Р + I.

Таким образом, конкурентное торможение — это такое торможение, когда ингибитор обратимо соединяется с ферментом в том участке его молекулы, в котором присоединяется и субстрат (активный центр), причем между субстратом и ингибитором существует количественное взаимоотношение. Классическим примером конкурентного торможения служит конкуренция между янтарной кислотой — субстрат и малоновой- ингибитор за фермент сукцинатдегидрогеназу, которая катализирует образование фумаровой кислоты из янтарной:

При неконкурентном торможении ингибитор соединяется с ферментом не по месту присоединения с субстратом (не с активным центром), а где-то в другом участке молекулы фермента, что приводит, к значительному снижению активности фермента и даже к его ингибированию. Таким примером является действие синильной кислоты на железосодержащие ферменты, осуществляющие перенос электронов при окислительно-восстановительных реакциях.

Общие представления о механизме действия ферментов

Механизм действия ферментов пока изучен недостаточно, однако имеющиеся данные позволяют высказать о нем общее представление.

В основе действия ферментов как биологических катализаторов лежит их способность повышать скорость реакции за счет снижения энергии активации субстрата, т. е. каким-то образом его активировать. Это достигается при взаимодействии субстрата с ферментом, который вызывает какие-либо изменения в молекуле субстрата, в результате чего он становится активным (реакционноспособным). Следовательно, необходимым условием для активации субстратов и понимания механизма действия ферментов является образование фермент-субстратного комплекса. Пути и механизмы, приводящие к активированию субстрата, могут быть самыми различными и зависят от структуры ферментов. В качестве примера можно привести предполагаемый механизм действия фумаразы — фермента-протеина, который вызывает активирование фумаровой кислоты, вследствие чего к ней присоединяется молекула воды и образуется яблочная кислота.

В фумаровой кислоте имеется двойная связь, которая представлена парами электронов. Под действием фумаразы происходит их перераспределение, что приводит к появлению зарядов на молекуле субстрата (субстрат активируется). Последний становится способным присоединять ионы (Н+ и ОН-) по типу электростатической связи:

При изучении механизма действия сложных ферментов оказалось, что в процессе активации субстрата принимает участие и небелковая часть — кофермент. Кроме того, было обращено внимание на следующие обстоятельства. Одно из них заключается в том, что молекула фермента во много раз больше молекулы субстрата, и поэтому субстрат не может быть связан со всей молекулой фермента. Второе обстоятельство характеризуется тем, что при отщеплении от молекулы фермента определенного количества аминокислот фермент продолжает катализировать те же самые реакции с высокой скоростью, что и нерасщепленный фермент. Например, при удалении из молекулы папаина (фермента, катализирующего распад белков в растениях) 120 из 180 аминокислот, входящих в состав его молекулы, фермент сохранял свои каталитические способности.