Под воздействием светового луча, падающего на сетчатку, вещество зрительного пурпура различным образом на различных участках этого слоя распадается, давая неокрашенное соединение. Именно такое химическое изменение и является началом возникновения колебательных электрических процессов в сетчатке, точнее в колбочках и палочках. Эти процессы распространяются далее по зрительному нерву и доходят до коры головного мозга.
Всюду электричество!
Впервые электрические процессы в сетчатке глаза были замечены Гольмгреном, а их особенности изучены Эйнтговеном. В настоящее время известно, что внутри глаза у человека и позвоночных животных так называемое дно глаза электроотрицательно по отношению к передней части глаза. Оказалось, что разница потенциалов вносится только сетчаткой. По удалении слоя сетчатки в остальной части глазного яблока разность потенциалов не обнаруживается. Между прочим, это обстоятельство позволяет нам выдвинуть два положения: 1) если биорадиационное излучение из глаза существует, то оно одинаково возможно как из глаза человека, так и из глаза животного; 2) прием этих излучений из другого глаза одинаково возможен как для глаза человека, так и для глаза животного.
Изменение разности электрических потенциалов, наступающее при световом раздражении глаза, экспериментально можно наблюдать во всех отделах зрительного анализатора: в сетчатке, зрительном нервном тракте и в зрительной области коры головного мозга. Характер этих электрических явлений общеизвестен. Действие светового раздражителя на глаз сопровождается определенными биоэлектрическими изменениями в центральном отделе зрительного анализатора - в area striata. При раздражении глаза мерцающим (прерывистым) светом повышение числа электрических колебаний в этой зоне наблюдается (с помощью аппарата, записывающего электроретинограмму) в течение всего периода раздражения глаза. В противовес этому, при непрерывном (сплошном) раздражении глаза световым лучом, повышение числа электрических колебаний в area striata наблюдается только в самом начале раздражения ("эффект включения") и вслед за прекращением раздражения ("эффект выключения").
Согласно фотохимической теории зрения, разработанной акад. П. П. Лазаревым, изменение светочувствительности глаза идет параллельно распаду зрительного пурпура. Биохимические и электрофизиологические исследования показывают, что, например, процесс темновой адаптации (приспособление самого глаза к темноте) осуществляется в сетчатке. Однако, до настоящего времени остается неясным, лежит ли в основе адаптации восстановление зрительного пурпура или же это восстановление только сопровождает процесс адаптации.
Произведенное в 1923 г. в Институте биофизики АН СССР под руководством акад. П. П. Лазарева изучение утомляемости органа зрения при слабых яркостях освещения (адаптация глаза) показало, что зрительный центр коры головного мозга является практически неутомляемым и все явления утомления сосредоточиваются в периферии зрительного анализатора; а именно в сетчатке глаза. Неутомляемость зрительного центра, по мнению П. П. Лазарева, связана с другой функцией этого центра - с периодическими реакциями химического свойства, протекающими в зрительном центре. Эти реакции кладут начало образованию электромагнитных колебаний в зрительном анализаторе, т. е. излучению электромагнитных волн в окружающую среду. Однако как это происходит конкретно, не было известно. Вообще, можно сказать, что исследования электрических явлений в зрительном анализаторе, в том числе в глазу человека, все еще не приобрели характера вполне законченных, и, значит, последнее слово о них еще не сказано. В частности, неизведанные просторы открываются перед исследователями, желающими изучить происхождение и ритм колебательных токов в нервных элементах сетчатки глаза, в особенности в колбочках и палочках. Впрочем, надо сказать, что в равной степени это относится и к предстоящим исследованиям по изучению феномена колебательных токов в нервных эпителиальных клетках и других рецепторных органов: слуха, обоняния, вкуса и осязания.
Еще в 1923 г. в своей книге [36], мы выдвинули предположение о том, что чувствительные нервные тельца так называемой "колбы Краузе" могут играть роль антенных рамок, т. е. микроантенн аппаратов, излучающих или принимающих биоэлектромагнитные колебания в органах осязания. Рассматривая эти вопросы подробнее в предыдущем разделе в связи с органом слуха, мы предположили, что волосатые нервные клетки улитки внутреннего уха могут быть приравнены к микроантеннам аппаратов как излучающих наружу свои биоэлектромагнитные волны, так и воспринимающих приходящие к ним извне биоэлектромагнитные волны акустической частоты. Возможно, одни из волосков улитки играют роль приемной микроантенны, другие излучающей.
Распространяя эту аналогию на колбочки и палочки рецепторного органа зрения, мы можем сказать, что они представляют собой микроантенны, из которых одни играют роль аппарата, воспринимающего приходящие к нему извне электромагнитные волны, а другие излучают в процессе зрения свои биоэлектромагнитные волны наружу. Причем принимающими микроантеннами являются колбочки, поскольку именно им свойственна способность "принимать" световые лучи и они по преимуществу расположены в центральной части сетчатки, куда чаще всего падает световой луч. Излучающими же микроантеннами являются, очевидно, палочки, поскольку они расположены в основном на периферии сетчатки, куда световой луч попадает гораздо реже. Таким образом, одно из функциональных различий между колбочками и палочками заключается в различии их "биорадиотехнического" назначения. Излучаемые палочками биоэлектромагнитные волны мы можем назвать "лучами зрения".
Английский физик Ч. Росс, много лет изучавший оптические свойства человеческого глаза, также придерживался мнения, что глаз излучает электромагнитную энергию. Ученый построил в 1925 г. прибор, главной частью которого была тонкая некрученая шелковинка с горизонтально подвешенной на ее нижнем конце тончайшей металлической спиралью. Над спиралью к шелковинке прикреплена легчайшая магнитная стрелка. Назначением магнитной стрелки являлась фиксация положения спирали в свободно подвешенном состоянии. Оказалось, что если устремить пристальный взор во внутрь спирали так, чтобы направление взора совпадало с геометрической осью витков спирали, и после этого начать медленно поворачивать голову до тех пор, пока "луч зрения" становился под некоторым углом к оси спирали, то можно заметить, как спираль начнет поворачиваться на тот же угол. При некоторых опытах угол такого "вынужденного" поворота сдирали достигал 60(.
Переходя к рассмотрению структурных особенностей палочек сетчатки, с точки зрения биологической радиосвязи, мы можем полагать, что прямолинейно Вытянутая часть тельца палочки представляет собой ультрамикроскопическую трубку из проводящего электроток материала, покрытую слоем диэлектрика. Каждые две пары палочек, хотя и тесно прилегают друг к другу, все же оставляют а середине между этими четырьмя удлиненными тельцами относительно длинный канал, который и можно сравнить с каналом микроволновода. Этот биологический волновод и составляет искомую "живую" микроантенну, придающую острую направленность излучаемым ею электромагнитным волнам "луча зрения". При этом свое первоначальное направление "луч зрения" принимает, идя по прямой линии вдоль геометрической оси волновода. Иначе говоря, луч выходит из волновода перпендикулярно к плоскости того участка сетчатки, где этот волновод находится.
Вполне допустимо принять и вторую версию аналогии палочки с микроантенной, если, например, считать, что одна палочка действует автономно от других, смежных с ней палочек. Будучи покрыта слоем диэлектрика, такая палочка представляет собой диэлектрический стержневой волновод. Электрическое и магнитное поля такого диэлектрика расположены не только внутри стержня, но и вне его. В этом есть свои преимущества: сильно уменьшается затухание волны. Поэтому в радиотехнике умышленно делают стержень волновода предельно тонким - с диаметром меньше 1/3 длины волны. В этом случае ядро палочки можно считать своеобразным молекулярным осциллятором-источником энергии, а членик-стержневым волноводом микроантенны, направляющим "луч зрения" перпендикулярно от внутренней поверхности сетчатки.