Выбрать главу

Можно согласиться с таким заключением, особенно если учесть, что белки, синтезируемые под контролем локусов гистосовместимости (их называют Н-локусами), определяют не только комплекс иммунологических реакций при отторжении трансплантата (отсюда и название этой системы генов), но и устойчивость клеток и организма к вирусам и к физическим или химическим повреждающим факторам. Наверное, это обусловлено тем, что рассматриваемые гены контролируют также способность клеток к репарации ДНК. Таким образом, обобщая рассмотренные данные и учитывая, что биологические защитно-компенсаторные и приспособительные механизмы организма, их степень выраженности и особенно потенциальные способности генетически детерминированы, можно заключить: основное значение в долголетии имеют гены, контролирующие эти механизмы. Но такие гены — лишь ничтожная часть, как полагают многие генетики, примерно из 50 тыс. других генов, составляющих генотип человека. Кроме того, эффективность функции "генов долголетия" определяется условиями жизни организма.

Сказанное позволяет понять следующий факт. Изучение природы внутривидовой и внутрипопуляционной вариабельности по продолжительности жизни проводилось в различных лабораториях для оценки наследуемости продолжительности жизни. Однако полученные при этом результаты неоднозначны. Так, наследуемость продолжительности жизни у дрозофилы, по данным различных авторов, обычно колеблется от 0,08 до 0,194, у нематод — от 0,2 до 0,5, а у мышей — от 0,21 до 0,79. Советский генетик и биогеронтолог И. Г. Коган (Институт химической физики АН СССР), исследовавший наследуемость продолжительности жизни у дрозофил, показал, что она может быть больше обычно принятых величин, приведенных выше, и составлять 0,337.

Эти данные могут иметь общебиологическое значение, так как из них следует, что наследуемость продолжительности жизни, понимаемая в широком смысле, весьма велика, и, следовательно, гетерогенность в популяциях животных по продолжительности жизни может быть также большой.

Подобно тому как это наблюдается у других млекопитающих, продолжительность жизни человека — типичный полигенный признак. Но (опять же в согласии с закономерностями, которым подчиняются другие млекопитающие), анализируя влияние генов на долголетие человека, можно выделить главные гены с резким фенотипическим проявлением и дополнительные гены-модификаторы, действующие на количественные признаки. Следовательно, должны существовать белки — продукты главных и дополнительных "генов долголетия", которые в большей или меньшей степени составляют молекулярно-клеточную основу долголетия человека.

Ранее изложенные факты позволяют с большой вероятностью полагать, что к числу таких белков относятся: супероксиддисмутаза; система ферментов, участвующих в "точной" репарации ДНК; белки, "помогающие" такой репарации, например, посредством изменения конформации ДНК, облегчающей залечивание ее повреждений (или, другими словами, увеличивающие ее ремонтопригодность). К числу "генов долголетия" можно отнести также гены, определяющие высокую степень иммунокомпетентности (в частности, главный локус гистосовместимости, о котором речь уже шла), гены, контролирующие содержание в тканях природных антиоксидантов (в частности, гены, кодирующие белки, осуществляющие транспорт ретинола или β-каротина и таким образом, возможно, обеспечивающие высокий уровень β-каротина в плазме крови и в других тканях человека), и т. д.

А сейчас перейдем к краткому рассмотрению более прямых данных, касающихся долголетия человека, и постараемся понять биологические основы рассматриваемых феноменов.

Рут Дворская с сотрудниками из медицинского колледжа Калифорнийского университета исследовала иммунные реакции у практически здоровых людей четырех возрастных групп: 9-17, 17–40, 64–66 и 83-104 лет. В согласии с данными других авторов было обнаружено понижение с возрастом реакции лимфоцитов на некоторые стимуляторы их митотической активности. Среди неожиданных результатов были такие: в группе старых людей (83-104 года) был увеличен титр антител против ДНК — и среди них была резко увеличена доля людей с III (В) группой крови.

Эти данные примечательны тем, что они позволяют отметить два типа различий между "молодыми" и "старыми" популяциями людей. Первый тип включает приобретенные, истинно возрастные изменения (приведенные примеры нарушения функций лимфоцитов и, очевидно, изменения количества антител к ДНК). Второй связан с тем, что по мере вымирания популяции остаются индивиды относительно жизнестойкие. А если эта жизнестойкость коррелирует с тем или иным молекулярно-физиологическим параметром, то среди людей, доживших до преклонного возраста (средний возраст более 90 лет), этот параметр должен быть относительно более выраженным.

Приведенные результаты Рут Дворской с сотрудниками и данное им здесь объяснение можно связать со следующими, казалось бы, далекими от них фактами.

В 1976 году, рассказывая о том, каким образом смертность организмов зависит от возраста, я привел график, характеризующий эту зависимость для мышей (этот график воспроизведен на рис. 2). Я тогда обращал внимание читателя на тот вытекавший из графика факт, что когда мыши становятся старыми, их смертность может увеличиваться с возрастом менее круто.

Сегодня есть основания предположить, что такая же закономерность справедлива и для человеческих популяций — такие данные имеются для мужчин Швеции старше 103 лет (смертность с возрастом может даже уменьшаться).

Биологическая основа этой закономерности (если она подтвердится) может быть интерпретирована двояко. Во-первых, может существовать определенная группа людей, генетически очень устойчивых к старению (назовем их потенциальными долгожителями). В этом случае к 90 годам относительное число таких людей в общей популяции 90-летних людей становится значительным, а в следующие годы оно будет еще возрастать. Следовательно, говоря о смертности популяции, уже надо рассматривать не только компоненту, обусловленную старением популяции, но и ту, которая характеризует противоположный процесс — возрастание устойчивости популяции к старению вследствие увеличения в ней относительного числа потенциальных долгожителей.

Однако не исключено существование и другой биологической закономерности. У очень старых людей активируются защитные механизмы, препятствующие одряхлению организма и тем самым уменьшающие зависимость их смертности от дальнейшего увеличения возраста.

Но может быть, такая активация происходит в основном у потенциальных долгожителей, и тогда оба изложенных здесь предположения справедливы? Достоверных ответов на эти вопросы пока нет. Но напомню приведенные в III и IV главах факты, говорящие в пользу возможности индукции механизмов репарации ДНК (не исключено, что даже спонтанной индукции под влиянием спонтанных повреждений ДНК, "накопленных" со временем в очень старых клетках). Косвенное доказательство этому мы получили, исследуя спонтанный репаративный синтез ДНК в очень "старых" фибробластах человека, а также в нервных клетках старых крыс.

В связи с этим заманчиво напомнить, что автор в 1970 году в книге "Молекулярные механизмы старения" обосновал концепцию, суть которой в следующем. Увеличение числа набора хромосом (полиплоидизация) в клетках печени при старении может повышать устойчивость клеток к действию мутагенов и является компенсаторной реакцией в ответ на снижение генетического потенциала клеток, в частности в ответ на уменьшение числа рибосомальных генов.

В середине 70-х годов (И. Зутши, Б. Л. Каул — 1975, А. Шима, Т. Сугахара — 1976) было получено доказательство этой гипотезы. Интересные результаты при исследовании проблемы полиплоидизации хромосом были получены выдающимся советским цитологом В. Я. Бродским с его сотрудницей И. В. Урываевой (Институт биологии развития АН СССР). Сказанное еще раз свидетельствует: исследование механизмов старения и долголетия позволяет глубже понять биологические закономерности, особенно касающиеся защитных механизмов.