Рис. 2.9. Микрофотография конъюгирующих бактерий (одной 'мужской' и двух 'женских' особей), полученная с помощью просвечивающего электронного микроскопа. × 19475
Донорная способность клеток определяется генами, находящимися в небольшой кольцевой молекуле ДНК, которую называют половым фактором или F-фактором (F — первая буква от англ. fertility — плодовитость). Это — своеобразная плазмида (см. ниже), которая кодирует белок специфических фимбрий, называемых F-пилями или половыми пилями. F-пили облегчают контакт клеток друг с другом. Молекула ДНК состоит из двух цепей. При конъюгации одна из цепей двухцепочечной ДНК F-фактора проникает через половую фимбрию из клетки-донора (F+) в клетку-реципиент (F-). Этот процесс схематически показан на рис. 2.10. Видно, что в клетке-доноре сохраняется F-фактор, который реплицируется в ней, пока в клетке-реципиенте синтезируется ее собственная копия. Так постепенно вся популяция клеток становится F+-клетками. Клетки-доноры могут спонтанно утрачивать F-фактор и становиться, таким образом, F--клетками.
Рис. 2.10. Конъюгация и перенос F-фактора из клетки в клетку. 1, 2 и 3 обозначают последовательность этапов переноса. 1 — раскручивающийся и одновременно реплицирующийся F-фактор; 2 — одноцепочечный F-фактор проникает в клетку-реципиент через F-фимбрию; 3 — F-фактор с синтезирующейся комплементарной цепью
F-фактор интересен еще и потому, что иногда (примерно в 1 случае из 100000) он встраивается в молекулу основной ДНК клетки-хозяина. Тогда при конъюгации переносится не только F-фактор, но также и остальная ДНК. Этот процесс занимает примерно 90 мин, но клетки могут расходиться и раньше, до полного обмена ДНК. Такие штаммы постоянно передают всю или большую часть своей ДНК другим клеткам. Эти штаммы называют Hfr-штаммами (от англ. Н = High — высокая, f = frequency — частота, г т recombination — рекомбинация), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.
При трансдукции небольшой двухцепочечный фрагмент ДНК попадает из клетки-донора в клетку-реципиент вместе с бактериофагом (одна из групп вирусов, см. разд. 2.5). Возможный механизм трансдукции изображен на рис. 2.11.
Рис. 2.11. Механизм трансдукции
Некоторые вирусы способны встраивать свою ДНК в ДНК бактерий; такая встроенная ДНК реплицируется одновременно с ДНК хозяина и передается от одного поколения бактерий к другому. Время от времени такая ДНК активируется и начинает кодировать образование новых вирусов. ДНК хозяина (бактерии) разрывается, а высвобожденные фрагменты иногда захватываются внутрь новых вирусных частиц, порой даже вытесняя ДНК самого вируса. Такие новые "вирусы", или трансдуцирующие частицы, затем переносят ДНК в клетки других бактерий.
Плазмиды и эписомы
Плазмиды и эписомы — это небольшие фрагменты ДНК, отличающейся от основной массы ДНК. Они часто реплицируются вместе с ДНК хозяина, но не нужны для выживания его клетки.
Сначала было принято различать эписомы и плазмиды: эписомы внедряются в ДНК хозяина, а плазмиды — нет. К эписомам относятся F-факторы и так называемые умеренные фаги (разд. 2.5.4). Сейчас обе группы называют одним общим термином "плазмиды". Плазмиды широко распространены в природе, и в последние годы их считают внутриклеточными паразитами или симбионтами, устроенными еще проще, чем вирусы. Вопрос о том, можно ли вирусы считать живыми организмами, мы обсудим в разд. 2.5.2. Что касается плазмид, то здесь дело обстоит еще сложнее — ведь они представляют собой только молекулы ДНК.
Плазмиды придают своим клеткам-хозяевам целый ряд особых свойств. Некоторые плазмиды являются "факторами резистентности" (R-плазмиды, или R-факторы)[4], т. е. факторами, придающими устойчивость к антибиотикам. Примером может служить пенициллиназная плазмида стафилококков, которая трансдуцируется различными бактериофагами. В этой плазмиде содержится ген, кодирующий фермент пенициллиназу, которая разрушает пенициллин и, таким образом, придает устойчивость к пенициллину. Передача и распространение таких факторов среди бактерий (в результате полового размножения) очень мешают врачам. Другие плазмидные гены определяют устойчивость к дезинфицирующим средствам; способствуют таким заболеваниям, как стафилококковая импетиго; помогают молочнокислым бактериям превращать молоко в сыр; придают способность усваивать такие сложные вещества, как углеводороды, что можно использовать для борьбы с загрязнениями океана или для получения кормового белка из нефти.