Рис. 17.23. Схема сокращения саркомера. Актиновые нити скользят вдоль нитей миозина
Сейчас эта гипотеза принята почти всеми. Однако действительный процесс, приводящий при этом к созданию механической силы (электромеханическое сопряжение), еще мало изучен, и для физиологов, занимающихся мышцами, он остается главной проблемой, ждущей своего решения. Однако в этой области достигнуты значительные успехи, и в следующем разделе мы изложим современные представления о механизме сокращения саркомера.
17.3. Как изменяется длина дисков А, Н и I при сокращении саркомера?
17.4. Как можно объяснить изменения дисков А, Н и I, исходя из того, что происходит с нитями актина и миозина?
17.4.7. Электромеханическое сопряжение
В состоянии покоя саркомер содержит определенные количества ионов Mg2+ и АТФ, в то время как концентрация свободных ионов Са2+ очень мала. В этих условиях актиновые нити находятся в "не-рабочем состоянии", так как тропомиозин, располагаясь определенным образом на молекуле актина, блокирует участки, к которым должны прикрепляться головки миозина, и эти головки притянуты к продольной оси миозиновой нити и удалены от актина.
При стимуляции мышечного волокна нервным импульсом по сарколемме распространяется волна деполяризации, которая затем то Т-системе переходит внутрь саркомера. Импульс достигает цистерн триады и стимулирует высвобождение из них ионов Са2+ , концентрация которых в саркоплазме соответственно увеличивается.
Ионы Са2+ связываются с тропонином С, который в свою очередь взаимодействует с тропонином I и снимает обычный эффект системы тропонина, препятствующий образованию мостиков между актином и миозином. Актин "включается" при смещении расположенного на его поверхности тропомиозина — места связывания актина с миозином обнажаются. В мышцах некоторых беспозвоночных животных ионы Са2+ могут также стимулировать АТФазную активность миозина, которая усиливается в дальнейшем и под действием актина. Во всех мышцах при активации актина и миозина миозиновая головка выводится из положения покоя и, связываясь с актином, образует актомиозиновый поперечный мостик. Энергия для образования таких мостиков высвобождается при гидролизе АТФ, и за счет этой энергии изменяется угол отхождения поперечных мостиков, что ведет к подтягиванию актиновой нити по направлению к середине саркомера. В результате такой активности всех миофиламентов при раздражении саркомера в нем создается сила (рис. 17.24), которая стремится вызвать укорочение саркомера.
Рис. 17.24. Электромеханическое сопряжение (тропомиозин и тропонин не изображены)
При затухании возбуждения в саркомере ионы Са2+ активно откачиваются назад в цистерны триад с помощью АТФ-зависимого кальциевого насоса. Концентрация этих ионов вскоре становится ниже пороговой для сокращения, и саркомер расслабляется. Комплекс тропомиозин-тропонин ингибирует АТФазную активность; поперечные мостики разрываются; актин, а возможно, и миозин переходят в "выключенное" состояние, и напряжение саркомера возвращается к обычному уровню покоя.
17.4.8. Снабжение энергией
Обычно первоисточником энергии для мышечного сокращения служит гликоген, а иногда используются жирные кислоты. В процессе расщепления этих субстратов вырабатывается АТФ, гидролиз которого доставляет энергию непосредственно для самого сокращения:
АТФ→АДФ + Фн + Энергия
В покоящейся мышце количество АТФ невелико, оно может обеспечить энергией лишь около восьми одиночных сокращений. Такой уровень АТФ может поддерживаться при обычном аэробном метаболизме (дыхании). В процессе работы мышц АТФ быстро расходуется, и его уровень должен быстро восстанавливаться уже за счет других процессов.
В восстановлении уровня АТФ участвует содержащийся в мышцах креатинфосфат (КрФ). Образующийся при мышечном сокращении АДФ вновь фосфорилируется в АТФ за счет креатинфосфата: