Таблица 17.5. Скорость работы крыльев у разных насекомых
Как общее правило, чем меньше насекомое, тем быстрее оно машет крыльями. У многих насекомых (у саранчи, стрекоз и др.) две пары крыльев. В некоторых случаях (например, у пчел) обе пары работают синхронно; в других случаях задняя пара несколько опережает переднюю, как, например, у саранчовых. У других насекомых (мухи, жуки) только одна пара крыльев. У комнатной мухи задние крылья редуцированы и превращены в жужжальца — булавовидные образования, выполняющие сенсорную функцию. Во время полета они быстро колеблются, воспринимают аэродинамические силы и доставляют информацию, необходимую для поддержания стабильности полета. У некоторых (очень немногих) насекомых, например у блох, крыльев нет совсем. Асинхронная мышца способна автоматически сокращаться в ответ на растяжение (так называемый рефлекс на растяжение), не дожидаясь очередного нервного импульса.
Асинхронный полет детально изучил Буттигер у мухи Sacrophaga bullata. При полете по прямой линии крылья у нее описывают в воздухе "восьмерку". Тягу и подъемную силу в основном создает движение крыльев вниз; при этом крылья смещаются также вперед, и задний их край несколько приподнят по отношению к переднему. При подъеме крыло движется вверх и назад и его задний край опущен по отношению к переднему. В таком положении крыло испытывает наименьшее сопротивление воздуха и в то же время обеспечивает большую подъемную силу.
При подъеме крыла сокращаются дорсовентральные мышцы. В результате тергит опускается и место сочленения крыла с тергитом оказывается ниже сочленения его с боковой стенкой груди (рис. 17.39). Сопротивление тергита его смещению вначале возрастает. Однако в критический момент сопротивление исчезает и крыло щелчком "перескакивает" в поднятое положение. При этом продольные мышцы растягиваются, что приводит к их немедленному рефлекторному сокращению. Теперь тергит выгибается вверх, и место соединения его с крылом оказывается выше сочленения крыла с боковой стенкой. Сопротивление такому смещению опять-таки преодолевается "щелчком", и крыло совершает резкое движение вниз. При этом дорсовентральные мышцы в свою очередь подвергаются растяжению, что заставляет их сократиться, и весь цикл повторяется снова.
17.6. У насекомых в летательных мышцах саркоплазматический ретикулум для увеличения поверхности оказывается продырявленным через определенные интервалы. Как можно объяснить смысл этого?
17.7. Можно ли ожидать, что объем саркоплазматического ретикулума в синхронных и асинхронных мышцах окажется различным? Аргументируйте свой ответ.
17.7. Локомоция позвоночных
17.7.1. Плавание рыб
Относительная плотность воды, особенно морской, очень высока и во многие сотни раз превышает плотность воздуха. Вода представляет собой относительно вязкую среду для перемещения в ней, но благодаря своей плотности она может обеспечивать опору для тела рыбы, а также служит субстратом, от которого рыба может отталкиваться при плавании.
У любого процветающего организма мы находим множество адаптаций к условиям среда, и рыбы не составляют исключения. Тело у большинства рыб имеет весьма обтекаемую форму, заострено с обоих концов. Благодаря этому поток воды легко огибает тело и сопротивление при движении сведено к минимуму. У рыбы нет выступающих частей тела, за исключением плавников, и, по-видимому, чем быстрее плавает рыба, тем более совершенна ее обтекаемая форма. Чешуя у хрящевых и костных рыб смазывается выделениями кожных желез, что тоже уменьшает трение между телом и водой. Еще одной общей адаптацией для лучшего передвижения в воде служат плавники. Непарные плавники, расположенные вдоль средней линии тела, помогают стабилизировать тело рыбы, в то время как парные (грудные и брюшные) используются для руления и балансирования; хвостовой плавник вместе с парными обеспечивает продвижение рыбы вперед через толщу воды. Детально работа плавников будет рассмотрена в последующих разделах.