У природы возможности несравненно богаче. Она находит оптимальные решения не путем предварительного расчета, а через изменение и селекцию, т. е. отбор. Сначала появляется большое количество различных вариантов, но из них остаются только те, которые выдержали борьбу за существование. Неподходящие образцы "отбрасываются". В действительности это как бы движение на ощупь, медленное изменение того или иного свойства в том или ином направлении. Оптимизация биологической структуры возможна только тогда, когда при неизменных условиях в окружающей среде развитие этой структуры совершается достаточно медленно. В противном случае оптимизация невозможна. Таким образом, не каждое приспособление является совершенным, т. е. оптимальным.
Очевидно, такие величины, как вес, стоимость, допустимая нагрузка и т. д., характеризующие конструкцию моста, могут быть выражены количественно и оптимизированы математическими методами. А можно ли осуществить математическую "обработку" формы живого организма? Да, конечно, только не будем забегать вперед! Такой обработке должна предшествовать определенная "математизация". Иными словами, сначала надо ответить на вопрос: как с помощью цифр описать внешний вид организма?
Для этого есть несколько способов различной степени сложности. Простейший и самый наглядный из них — сравнение числовых характеристик: количества ног, крыльев, глаз, члеников на усиках и т. п. у животных или количества тычинок, цветков, лепестков, компонентов листа и т. п. у растений. Существуют двуногие, шестиногие (насекомые), десятиногие (высшие ракообразные), двукрылые (мухи и комары). Вспомним божьих коровок, их обычные виды — семиточечная (Coccinella septempunctata) и двухточечная (Coccinella bipunctata). Живые организмы можно сравнивать и по геометрическим размерам. Так, в справочниках растений мы часто встречаем такое сопоставление: растение маленькое, не больше 10-15 см в высоту, и растение выше 20 см. Можно проводить сравнения и в относительных единицах: например, у лани хвост длиннее уха, а у благородного оленя хвост по длине равен уху. Анализируя форму живых организмов, мы можем осуществлять различные измерения и получать числовые значения, пригодные для дальнейшей математической обработки.
С чего же начать обработку полученных чисел? Математики уже давно научились объединять множество измеряемых величин, или, проще говоря, чисел, таким образом, чтобы получалась некая цельная картина. Если какой-то предмет характеризуется двумя параметрами, то в соответствии с их значениями его можно представить точкой на плоскости. Возьмем пример из биологии: маргаритку, в частности, можно охарактеризовать количеством цветолистиков и высотой соцветия, измеренной в сантиметрах. Обе величины могут изменяться, но только в определенных границах. Итак, мы срываем маргаритку (кому это действие кажется слишком простым, тот пусть попытается отделить соцветие вида Bellis perennis L. от розетки листьев), считаем цветолистики, измеряем длину цветоноса и отмечаем оба значения в системе координат, по осям которой откладываются соответствующие единицы. На том же лугу растет множество других маргариток; мы многократно повторяем наш опыт, и каждый раз на бумаге появляется еще одна точка. При некотором усердии мы получим целое облачко точек.
Числа (А), размеры (Б) и математические функции (В) — основа для точного сопоставления биологических форм
Почему мы выбрали именно эти два параметра? Может быть, они наиболее характерны? Ничего подобного! С таким же успехом мы могли бы взять число листьев в розетке, длину листьев, диаметр головки соцветия и т. д. После того как нам удалось свести два параметра к одной точке, многообразие живой природы снова озадачивает нас, Если к двум параметрам добавить третий, то для каждой конкретной маргаритки мы получим точку уже не на плоскости, а в пространстве, и для всех маргариток, растущих на этом лугу, — объемное облако точек, которое характеризует целый вид. А что дальше?
Выбранные параметры маргаритки отложены по осям системы координат. В результате измерений этих параметров для различных растений исследуемого вида мы получаем в фазовом пространстве облачко точек, характерное для данного вида. Каждому из растений соответствует одна точка в этом облачке
Такой вопрос может возникнуть только у человека, далекого от математики, который убежден в том, что все существующее можно представить зрительно. Математик думает иначе, он живет в мире абстрактного. Если трех измерений не хватает, то пусть будет 4, 5, 6, 10 или, наконец, n измерений, то есть сколь угодно много. И хотя с каждым новым измерением расчеты усложняются, в принципе можно рассчитать любое многомерное пространство. Но теперь слово "пространство" обозначает нечто совершенно отличное от того, что мы обычно изображаем в виде трехмерной структуры. Многомерные пространства используют в своих расчетах также физики-теоретики и называют их фазовыми пространствами. У нас нет причин искать какое-либо другое название. Итак, биологический вид есть облако точек в n-мерном фазовом пространстве.